198 research outputs found

    Early-onset breast cancer in a Lebanese family with Lynch syndrome due to MSH2 gene mutation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There are still controversies about the integration of breast cancer as a part of the disease spectrum in Lynch syndrome.</p> <p>Methods</p> <p>A regular follow-up of a Lebanese pedigree with Lynch syndrome due to a point mutation of MSH2 gene at the splice donor site of intron 3 started in 1996.</p> <p>Results</p> <p>A 26-year-old pregnant woman, mutation carrier, developed an aggressive breast cancer, refractory to standard chemotherapy regimens. The microsatellite analysis of the tumor showed an unstable pattern for markers BAT25 and BAT26. The immunohistochemical staining was negative for MSH2 and MSH6 and normal for MLH1 and PMS6 enzymes.</p> <p>Conclusion</p> <p>The segregation of the mutation with the disease phenotype and these results suggest that MSH2 inactivation may be involved in the accelerated breast carcinogenesis and might be considered in the cancer screening program.</p

    Tumour necrosis factor-α up-regulates macrophage migration inhibitory factor expression in endometrial stromal cells via the nuclear transcription factor NF-κB

    Get PDF
    BACKGROUND: A series of controlled changes including proliferation, secretion and menstrual shedding occur in the human endometrium during every normal menstrual cycle. Macrophage migration inhibitory factor (MIF), a multifunctional cytokine with numerous proinflammatory, immunomodulatory and angiogenic properties, appears to be expressed in the human endometrium and to follow a regulated cycle phase-dependent expression, but the mechanisms underlying endometrial MIF expression remain to be fully elucidated. METHODS AND RESULTS: Results from enzyme-linked immunosorbent assay (ELISA) demonstrated a significant dose- and time-dependent increase in MIF secretion by human endometrial cells in response to tumour necrosis factor-alpha (TNF-α) (0.1-100 ng/ml). This increase was also observed at the mRNA level as shown by reverse transcription (RT)-PCR. Curcumin (10−8 mol/l), a known nuclear factor (NF)-κB inhibitor, inhibited the TNF-α-induced pIκB phosphorylation as shown by western blotting, NF-κB translocation into the nucleus as shown by electrophoretic mobility shift assay, and MIF synthesis and secretion as measured by ELISA and RT-PCR. The expression of a dominant-negative NF-κB inhibitor (IκB) significantly decreased the TNF-α-induced MIF promoter activity as analysed by transient cell transfection. CONCLUSIONS: These results indicate clearly that TNF-α up-regulates the expression of MIF in endometrial stromal cells. This took place possibly through NF-κB activation, and may play an important role in the physiology of the human endometriu

    Macrophage Migration Inhibitory Factor Antagonist Blocks the Development of Endometriosis In Vivo

    Get PDF
    Endometriosis, a disease of reproductive age women, is a major cause of infertility, menstrual disorders and pelvic pain. Little is known about its etiopathology, but chronic pelvic inflammation is a common feature in affected women. Beside symptomatic treatment of endometriosis-associated pain, only two main suboptimal therapeutic approaches (hormonal and invasive surgery) are generally recommended to patients and no specific targeted treatment is available. Our studies led to the detection of a marked increase in the expression of macrophage migration inhibitory factor (MIF) in the eutopic endometrium, the peripheral blood and the peritoneal fluid of women with endometriosis, and in early, vascularized and active endometriotic lesions. Herein, we developed a treatment model of endometriosis, where human endometrial tissue was first allowed to implant into the peritoneal cavity of nude mice, to assess in vivo the effect of a specific antagonist of MIF (ISO-1) on the progression of endometriosis and evaluate its efficacy as a potential therapeutic tool. Administration of ISO-1 led to a significant decline of the number, size and in situ dissemination of endometriotic lesions. We further showed that ISO-1 may act by significantly inhibiting cell adhesion, tissue remodeling, angiogenesis and inflammation as well as by altering the balance of pro- and anti-apoptotic factors. Actually, mice treatment with ISO-1 significantly reduced the expression of cell adhesion receptors αv and ß3 integrins (P<0.05), matrix metalloproteinases (MMP) 2 and 9 (P<0.05), vascular endothelial cell growth factor (VEGF) (P<0.01), interleukin 8 (IL8) (P<0.05), cyclooxygenease (COX)2 (P<0.001) and the anti-apoptotic protein Bcl2 (P<0.01), but significantly induced the expression of Bax (P<0.05), a potent pro-apoptotic protein. These data provide evidence that specific inhibition of MIF alters endometriotic tissue growth and progression in vivo and may represent a promising potential therapeutic avenue

    HRS white paper on clinical utilization of digital health technology.

    Get PDF
    This collaborative statement from the Digital Health Committee of the Heart Rhythm Society provides everyday clinical scenarios in which wearables may be utilized by patients for cardiovascular health and arrhythmia management. We describe herein the spectrum of wearables that are commercially available for patients, and their benefits, shortcomings and areas for technological improvement. Although wearables for rhythm diagnosis and management have not been examined in large randomized clinical trials, undoubtedly the usage of wearables has quickly escalated in clinical practice. This document is the first of a planned series in which we will update information on wearables as they are revised and released to consumers

    Atrial Heterogeneity Generates Re-entrant Substrate during Atrial Fibrillation and Anti-arrhythmic Drug Action: Mechanistic Insights from Canine Atrial Models

    Get PDF
    Anti-arrhythmic drug therapy is a frontline treatment for atrial fibrillation (AF), but its success rates are highly variable. This is due to incomplete understanding of the mechanisms of action of specific drugs on the atrial substrate at different stages of AF progression. We aimed to elucidate the role of cellular, tissue and organ level atrial heterogeneities in the generation of a re-entrant substrate during AF progression, and their modulation by the acute action of selected anti-arrhythmic drugs. To explore the complex cell-to-organ mechanisms, a detailed biophysical models of the entire 3D canine atria was developed. The model incorporated atrial geometry and fibre orientation from high-resolution micro-computed tomography, region-specific atrial cell electrophysiology and the effects of progressive AF-induced remodelling. The actions of multi-channel class III anti-arrhythmic agents vernakalant and amiodarone were introduced in the model by inhibiting appropriate ionic channel currents according to experimentally reported concentration-response relationships. AF was initiated by applied ectopic pacing in the pulmonary veins, which led to the generation of localized sustained re-entrant waves (rotors), followed by progressive wave breakdown and rotor multiplication in both atria. The simulated AF scenarios were in agreement with observations in canine models and patients. The 3D atrial simulations revealed that a re-entrant substrate was typically provided by tissue regions of high heterogeneity of action potential duration (APD). Amiodarone increased atrial APD and reduced APD heterogeneity and was more effective in terminating AF than vernakalant, which increased both APD and APD dispersion. In summary, the initiation and sustenance of rotors in AF is linked to atrial APD heterogeneity and APD reduction due to progressive remodelling. Our results suggest that anti-arrhythmic strategies that increase atrial APD without increasing its dispersion are effective in terminating AF

    Comparison of RCAS1 and metallothionein expression and the presence and activity of immune cells in human ovarian and abdominal wall endometriomas

    Get PDF
    BACKGROUND: The coexistence of endometrial and immune cells during decidualization is preserved by the ability of endometrial cells to regulate the cytotoxic immune activity and their capability to be resistant to immune-mediated apoptosis. These phenomena enable the survival of endometrial ectopic cells. RCAS1 is responsible for regulation of cytotoxic activity. Metallothionein expression seems to protect endometrial cells against apoptosis. The aim of the present study was to evaluate RCAS1 and metallothionein expression in human ovarian and scar endometriomas in relation to the presence of immune cells and their activity. METHODS: Metallothionein, RCAS1, CD25, CD69, CD56, CD16, CD68 antigen expression was assessed by immunohistochemistry in ovarian and scar endometriomas tissue samples which were obtained from 33 patients. The secretory endometrium was used as a control group (15 patients). RESULTS: The lowest metallothionein expression was revealed in ovarian endometriomas in comparison to scar endometriomas and to the control group. RCAS1 expression was at the highest level in the secretory endometrium and it was at comparable levels in ovarian and scar endometriomas. Similarly, the number of CD56-positive cells was lower in scar and ovarian endometriomas than in the secretory endometrium. The highest number of macrophages was found in ovarian endometriomas. RCAS1-positive macrophages were observed only in ovarian endometriomas. CD25 and CD69 antigen expression was higher in scar and ovarian endometriomas than in the control group. CONCLUSION: The expression of RCAS1 and metallothionein by endometrial cells may favor the persistence of these cells in ectopic localization both in scar following cesarean section and in ovarian endometriosis

    Shear enhanced microfiltration and rejection of crude oil drops through a slotted pore membrane including migration velocities

    Get PDF
    This article was published in the Journal of Membrane Science [© Elsevier] and the definitive version is available at: http://www.sciencedirect.com/science/article/pii/S0376738812004991Shear enhanced microfiltration of crude oil/water emulsion is investigated and the effect of an applied shear rate on the rejection of droplets by the membrane is reported. Applying vibration provides shear rate at the membrane surface leading to shear-induced migration and an inertial lift of drops/particles. Both phenomena tend to move the droplets away from the membrane surface. The shear-induced migration and inertial lift increase with increasing of the shear rate. A mathematical model is presented to account for the presence of both phenomena. The developed model is used for theoretical prediction of 100% cut-off of crude oil droplets by the membrane with, and with-out, vibration applied. A satisfactory agreement of the model predictions with experimental data shows that the model can be successfully used for a theoretical prediction of 100% cut-off of droplets by slotted pore membranes. Rejection of droplets increased with applying shear rate: at 8000 s-1 shear rate and 200 l m-2 hr-1 flux rate 3 to 4 μm radius droplets were almost completely rejected reducing 400 ppm of crude in the feed to 7 ppm in the permeate
    corecore