44 research outputs found

    Effects of Oxygen Plasma on the Chemical, Light-emitting, and Electrical Transport Properties of Inorganic and Hybrid Lead Bromide Perovskite Nanocrystal Films

    Get PDF
    We show that oxygen plasma affects in different ways the structural, chemical, optical, and electrical properties of methylammonium and cesium lead bromide nanocrystals. Hybrid organic-inorganic nanocrystals were severely and quickly degraded by oxygen plasma at 50 W. Their photoluminescence was quenched with almost 100% loss of the initial quantum yield, which is linked to decomposition of the nanocrystals. Inorganic nanocrystals were more resistant to oxygen plasma in the same conditions. Despite a moderate loss of photoluminescence and electrical conductivity, oxygen plasma had a positive impact, removing unbound ligands and resulting in more ohmic behavior of the film. This paves the way for the application of oxygen plasma in the development of perovskite-based optoelectronic devices

    Описание и генерация перестановок, содержащих циклы

    Get PDF
    Запропоновано загальний підхід до генерації перестановок, що містять цикли, на основі введених конструктивних засобів опису комбінаторних множин. Формулюються та розв’язуються різні задачі генерації перестановок заданого класу. Для опису перестановок, представлених у вигляді добутку заданої кількості циклів, вводиться комбінаторна множина. Для введеної множини будуються комбінаторний вид та відповідний твірний ряд. Наводяться приклади.The paper proposes a general approach to generating permutations that contain cycles, based on constructive tools introduced to describe combinatorial sets. Different generation problems for permutations of definite class are formulated and solved. A combinatorial set is introduced to define permutations represented as the multiplication of a definite number of cycles. For this set, combinatorial species and associated generating series are constructed. Examples are given

    Molecular Iodine for a General Synthesis of Binary and Ternary Inorganic and Hybrid Organic-inorganic Iodide Nanocrystals

    Get PDF
    We report the synthesis of various binary and ternary inorganic and hybrid organic-inorganic iodide nanocrystals starting from molecular iodine (I2). The procedure utilizes a reaction between I2 and oleylamine that yields oleylammonium iodide -the iodide precursor for a subsequent preparation of nanocrystals. The syntheses are facile, carried out under air, in vials heated on a hotplate and deliver nanocrystals with narrow size distributions and, in the case of red and near infrared-emitting lead-based perovskites, with 70-80% photoluminescence quantum yields. The latter were used to fabricate red and infrared bright light-emitting diodes, with external quantum efficiencies (EQE) exceeding 3%

    Exploiting the lability of metal halide perovskites for doping semiconductor nanocomposites

    Get PDF
    Cesium lead halides have intrinsically unstable crystal lattices and easily transform within perovskite and nonperovskite structures. In this work, we explore the conversion of the perovskite CsPbBr into CsPbBr in the presence of PbS at 450 °C to produce doped nanocrystal-based composites with embedded CsPbBr nanoprecipitates. We show that PbBr is extracted from CsPbBr and diffuses into the PbS lattice with a consequent increase in the concentration of free charge carriers. This new doping strategy enables the adjustment of the density of charge carriers between 10 19 and 10 20 cm -3, and it may serve as a general strategy for doping other nanocrystal-based semiconductors

    In situ transmission electron microscopy study of electron beam-induced transformations in colloidal cesium lead halide perovskite nanocrystals

    Get PDF
    An increasing number of studies have recently reported the rapid degradation of hybrid and all-inorganic lead halide perovskite nanocrystals under electron beam irradiation in the transmission electron microscope, with the formation of nanometer size, high contrast particles. The nature of these nanoparticles and the involved transformations in the perovskite nanocrystals are still a matter of debate. Herein, we have studied the effects of high energy (80/200 keV) electron irradiation on colloidal cesium lead bromide (CsPbBr3) nanocrystals with different shapes and sizes, especially 3 nm thick nanosheets, a morphology that facilitated the analysis of the various ongoing processes. Our results show that the CsPbBr3 nanocrystals undergo a radiolysis process, with electron stimulated desorption of a fraction of bromine atoms and the reduction of a fraction of Pb2+ ions to Pb0. Subsequently Pb0 atoms diffuse and aggregate, giving rise to the high contrast particles, as previously reported by various groups. The diffusion is facilitated by both high temperature and electron beam irradiation. The early stage Pb nanoparticles are epitaxially bound to the parent CsPbBr3 lattice, and evolve into nonepitaxially bound Pb crystals upon further irradiation, leading to local amorphization and consequent dismantling of the CsPbBr3 lattice. The comparison among CsPbBr3 nanocrystals with various shapes and sizes evidences that the damage is particularly pronounced at the corners and edges of the surface, due to a lower diffusion barrier for Pb0 on the surface than inside the crystal and the presence of a larger fraction of under-coordinated atoms

    Exploiting the Lability of Metal Halide Perovskites for Doping Semiconductor Nanocomposites

    Get PDF
    Cesium lead halides have intrinsically unstable crystal lattices and easily transform within perovskite and nonperovskite structures. In this work, we explore the conversion of the perovskite CsPbBr3 into Cs4PbBr6 in the presence of PbS at 450 °C to produce doped nanocrystal-based composites with embedded Cs4PbBr6 nanoprecipitates. We show that PbBr2 is extracted from CsPbBr3 and diffuses into the PbS lattice with a consequent increase in the concentration of free charge carriers. This new doping strategy enables the adjustment of the density of charge carriers between 1019 and 1020 cm-3, and it may serve as a general strategy for doping other nanocrystal-based semiconductors.M.C. has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 665385. ICN2 acknowledges funding from Generalitat de Catalunya 2017 SGR 327. ICN2 is supported by the Severo Ochoa program from Spanish MINECO (Grant No. SEV-2017-0706) and is funded by the CERCA Programme/Generalitat de Catalunya. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 823717 – ESTEEM3. M.V.K. acknowledges the support by the European Research Council under the Horizon 2020 Framework Program (ERC Consolidator Grant SCALE-HALO Grant Agreement No. 819740) and by FET-OPEN project no. 862656 (DROP-IT)

    X‑ray Lithography on Perovskite Nanocrystals Films: From Patterning with Anion-Exchange Reactions to Enhanced Stability in Air and Water

    No full text
    Films of colloidal CsPbX<sub>3</sub> (X = I, Br or Cl) nanocrystals, prepared by solution drop-casting or spin-coating on a silicon substrate, were exposed to a low flux of X-rays from an X-ray photoelectron spectrometer source, causing intermolecular CC bonding of the organic ligands that coat the surface of the nanocrystals. This transformation of the ligand shell resulted in a greater stability of the film, which translated into the following features: (i) Insolubility of the exposed regions in organic solvents which caused instead complete dissolution of the unexposed regions. This enabled the fabrication of stable and strongly fluorescent patterns over millimeter scale areas. (ii) Inhibition of the irradiated regions toward halide anion exchange reactions, when the films were exposed either to halide anions in solution or to hydrohalic vapors. This feature was exploited to create patterned regions of different CsPbI<sub><i>x</i></sub>Br<sub><i>y</i></sub>Cl<sub><i>z</i></sub> compositions, starting from a film with homogeneous CsPbX<sub>3</sub> composition. (iii) Resistance of the films to degradation caused by exposure to air and moisture, which represents one of the major drawbacks for the integration of these materials in devices. (iv) Stability of the film in water and biological buffer, which can open interesting perspectives for applications of halide perovskite nanocrystals in aqueous environments
    corecore