787 research outputs found

    E1 transitions between spin-dipole and Gamow-Teller giant resonances

    Get PDF
    The branching ratios for E1 transitions between the spin-dipole (SD) and Gamow-Teller (GT) giant resonances in 90^{90}Nb and 208^{208}Pb are evaluated. Assuming the main GT-state has the wave function close to that for the "ideal" GT-state, we reduced the problem to calculate the SD and GT strength functions. These strength functions are evaluated within an extended continuum-RPA approach.Comment: 8 pages, submitted to Phys. Rev.

    Thin Ice Target for 16^{16}O(p,p') experiment

    Full text link
    A windowless and self-supporting ice target is described. An ice sheet with a thickness of 29.7 mg/cm2^2 cooled by liquid nitrogen was placed at the target position of a magnetic spectrometer and worked stably in the 16^{16}O(p,p)(p,p') experiment at Ep=392E_{p}=392 MeV. Background-free spectra were obtained.Comment: 14 pages, 4 figures, Nucl. Instr. & Meth. A (in press

    Structure and decay properties of spin-dipole giant resonances within a semimicroscopical approach

    Get PDF
    A semimicroscopical approach is applied to calculate: (i) strength functions for the charge-exchange spin-dipole giant resonances in the 208Pb parent nucleus; (ii) partial and total branching ratios for the direct proton decay of the resonance in 208Bi. The approach is based on continuum-RPA calculations of corresponding reaction-amplitudes and phenomenological description of the doorway-state coupling to many-quasiparticle configurations. The only adjustable parameter needed for the description is found by comparison of the calculated and experimental total widths of the resonance. Other model parameters used in calculations are taken from independent data. The calculated total branching ratio is found to be in reasonable agreement with the experimental value.Comment: 15 pages, 4 figures, submitted to Phys. Lett.

    Effect of deformation on two-neutrino double beta decay matrix elements

    Full text link
    We study the effect of deformation on the two-neutrino double beta decay for ground state to ground state transitions in all the nuclei whose half-lives have been measured. Our theoretical framework is a deformed QRPA based in Woods-Saxon or Hartree-Fock mean fields. We are able to reproduce at the same time the main characteristics of the two single beta branches, as well as the double beta matrix elements. We find a suppression of the double beta matrix element with respect to the spherical case when the parent and daughter nuclei have different deformations

    Isoscalar Giant Resonance Strengths in 32^{32}S and possible excitations of superdeformed and 28^{28}Si + α\alpha cluster bandheads

    Full text link
    Isoscalar giant resonances and low spin states in 32^{32}S have been measured with inelastic α\alpha scattering at extremely forward angles including zero degrees at Eα_{\alpha} = 386 MeV. By applying the multipole decomposition analysis, various excited states are classified according to their spin and parities (Jπ^{\pi}), and are discussed in relation to the super deformed and 28^{28}Si + α\alpha cluster bands

    Rho-Nucleon Tensor Coupling and Charge-Exchange Resonances

    Get PDF
    The Gamow-Teller resonances are discussed in the context of a self-consistent RPA, based on the relativistic mean field theory. We inquire on the possibility of substituting the phenomenological Landau-Migdal force by a microscopic nucleon-nucleon interaction generated from the rho-nucleon tensor coupling. The effect of this coupling turns out to be very small when the short range correlations are not taken into account, but too large when these correlations are simulated by the simple extraction of the contact terms from the resulting nucleon-nucleon interaction.Comment: 15 pages, LaTeX, 2 figures; extended text, improved figures, new references added, the version appearing in Phys.Lett.

    Isotopic dependence of the giant monopole resonance in the even-A ^{112-124}Sn isotopes and the asymmetry term in nuclear incompressibility

    Full text link
    The strength distributions of the giant monopole resonance (GMR) have been measured in the even-A Sn isotopes (A=112--124) with inelastic scattering of 400-MeV α\alpha particles in the angular range 00^\circ--8.58.5^\circ. We find that the experimentally-observed GMR energies of the Sn isotopes are lower than the values predicted by theoretical calculations that reproduce the GMR energies in 208^{208}Pb and 90^{90}Zr very well. From the GMR data, a value of Kτ=550±100K_{\tau} = -550 \pm 100 MeV is obtained for the asymmetry-term in the nuclear incompressibility.Comment: Submitted to Physical Review Letters. 10 pages; 4 figure
    corecore