14 research outputs found

    Heterozygous Loss-of-Function SEC61A1 Mutations Cause Autosomal-Dominant Tubulo-Interstitial and Glomerulocystic Kidney Disease with Anemia

    Get PDF
    Autosomal-dominant tubulo-interstitial kidney disease (ADTKD) encompasses a group of disorders characterized by renal tubular and interstitial abnormalities, leading to slow progressive loss of kidney function requiring dialysis and kidney transplantation. Mutations in UMOD, MUC1, and REN are responsible for many, but not all, cases of ADTKD. We report on two families with ADTKD and congenital anemia accompanied by either intrauterine growth retardation or neutropenia. Ultrasound and kidney biopsy revealed small dysplastic kidneys with cysts and tubular atrophy with secondary glomerular sclerosis, respectively. Exclusion of known ADTKD genes coupled with linkage analysis, whole-exome sequencing, and targeted re-sequencing identified heterozygous missense variants in SEC61A1—c.553A>G (p.Thr185Ala) and c.200T>G (p.Val67Gly)—both affecting functionally important and conserved residues in SEC61. Both transiently expressed SEC6A1A variants are delocalized to the Golgi, a finding confirmed in a renal biopsy from an affected individual. Suppression or CRISPR-mediated deletions of sec61al2 in zebrafish embryos induced convolution defects of the pronephric tubules but not the pronephric ducts, consistent with the tubular atrophy observed in the affected individuals. Human mRNA encoding either of the two pathogenic alleles failed to rescue this phenotype as opposed to a complete rescue by human wild-type mRNA. Taken together, these findings provide a mechanism by which mutations in SEC61A1 lead to an autosomal-dominant syndromic form of progressive chronic kidney disease. We highlight protein translocation defects across the endoplasmic reticulum membrane, the principal role of the SEC61 complex, as a contributory pathogenic mechanism for ADTKD

    A homozygous mutation in IBA57 involved in intramitochondrial iron-sulfur cluster synthesis causes severe encephalopathy and mypathy in two neonates

    No full text
    Background: Combined OXPHOS deficiencies involving complexes I and II have recently been detected in patients with deficient iron-sulfur cluster (ISC) biogenesis. So far, patients were reported with pathogenic mutations in NFU1 and BOLA3 presenting with severe encephalomyopathy at young age. Objective: Two siblings with combined deficiency of complex I and II were investigated for possible defect in ISC. Patients and methods: The siblings presented soon after birth with severe encephalomyopathy and died in the neonatal period. Biochemical investigations showed increased lactate in serum and increased glycine in CSF. Considering the consanguineous descent a search for genes in homozygous regions related to ISC metabolism was performed. Results: Isolating IBA57 as a strong candidate gene, sequencing detected a homozygous mutation (c.941A>C) in the two siblings and a heterozygous carrier status in both parents. Western blotting showed a severe decrease of CRM for the IBA57 protein. The protein amount in the complexes I and II was significantly decreased. Transfection experiments in HeLa cells demonstrated that the mutation was pathogenic and that excessive degradation of the IBA57 protein was responsible for the defective ISC biosynthesis. Conclusion: This is the first report of a pathogenic mutation in IBA57 in human

    Mutation of the iron-sulfur cluster assembly gene IBA57 causes severe myopathy and encephalopathy

    No full text
    Two siblings from consanguineous parents died perinatally with a condition characterized by generalized hypotonia, respiratory insufficiency, arthrogryposis, microcephaly, congenital brain malformations and hyperglycinemia. Catalytic activities of the mitochondrial respiratory complexes I and II were deficient in skeletal muscle, a finding suggestive of an inborn error in mitochondrial biogenesis. Homozygosity mapping identified IBA57 located in the largest homozygous region on chromosome 1 as a culprit candidate gene. IBA57 is known to be involved in the biosynthesis of mitochondrial [4Fe-4S] proteins. Sequence analysis of IBA57 revealed the homozygous mutation c.941A > C, p.Gln314Pro. Severely decreased amounts of IBA57 protein were observed in skeletal muscle and cultured skin fibroblasts from the affected subjects. HeLa cells depleted of IBA57 showed biochemical defects resembling the ones found in patient-derived cells, including a decrease in various mitochondrial [4Fe-4S] proteins and in proteins covalently linked to lipoic acid (LA), a cofactor produced by the [4Fe-4S] protein LA synthase. The defects could be complemented by wild-type IBA57 and partially by mutant IBA57. As a result of the mutation, IBA57 protein was excessively degraded, an effect ameliorated by protease inhibitors. Hence, we propose that the mutation leads to partial functional impairment of IBA57, yet the major pathogenic impact is due to its proteolytic degradation below physiologically critical levels. In conclusion, the ensuing lethal complex biochemical phenotype of a novel metabolic syndrome results from multiple Fe/S protein defects caused by a deficiency in the Fe/S cluster assembly protein IBA57
    corecore