218 research outputs found

    Investigation of Correlation Functions in Low-Dimensional Quantum Antiferromagnets by Quantum Monte Carlo Methods

    Get PDF
    In this thesis the quantum Monte Carlo loop algorithm is applied to study the properties of correlation functions in low-dimensional quantum antiferromagnets. Two different types of lattice models are investigated. The first system is the quantum critical XXZ chain. The second class of models emerges when coupling the square lattice Heisenberg model to phonons. In case of the quantum critical XXZ chain, the loop algorithm is used to compute the two-point spin and dimer correlation functions at low temperatures. Starting from the well-known asymptotic expressions from conformal field theory for the decay of the correlations, the crossover from the finite-temperature to the ground state behavior is investigated. In addtion, the Monte Carlo data are used to extract numerical estimates for the correlation amplitudes. The deviations from asymptotic scaling at low finite temperatures and intermediate distances are examined. The results are also used to study the algebraic and logarithmic corrections in the ground state. The method is further applied to compute the low-temperature spin correlations of the square lattice Heisenberg model coupled to dispersionless Einstein phonons. Also, statically dimerized Heisenberg models in two dimensions are investigated. Here the quantum Monte Carlo technique is used to determine the specific pattern of dimerized bonds which has the largest gain in the magnetic energy. A direct comparison of ground state energies is only possible for a small number of dimerized systems. For this reason an alternative approach is developed, which allows to study a significantly larger class of models. Starting from a Landau expansion of the free energy, this amounts to a computation of specific structure factors of the dimer correlations of the uniform Heisenberg model. As a consequence, a Landau theory for the two-dimensional counterpart of the spin-Peierls transition is established. This adiabatic approach also applies to the Heisenberg model coupled to dispersive phonons. In this case the data for the dimer correlations are used to study the impact of the spin-phonon coupling on the phonon dispersion relations. In particular, the softening of phonon modes is investigated, which is relevant for experimental studies on substances with a quasi two-dimensional magnetic structure

    The cytotoxicity of fatty acid/α-lactalbumin complexes depends on the amount and type of fatty acid

    Get PDF
    peer-reviewedComplexes of the milk protein, α-lactalbumin, and the fatty acid, oleic acid, have previously been shown to be cytotoxic. Complexes of α-lactalbumin and five different fatty acids (vaccenic, linoleic, palmitoleic, stearic, and elaidic acid) were prepared and compared to those formed with oleic acid. All complexes were cytotoxic to human promyelocytic leukemia-derived (HL-60) cells but to different degrees depending on the fatty acid. The amount of fatty acid per α-lactalbumin molecule was found to correlate with the cytotoxicity; the higher the number of fatty acids per protein, the more cytotoxic the complex. Importantly, all the tested fatty acids were also found to be cytotoxic on their own in a concentration dependent manner. The cytotoxic effect of complexes between α-lactalbumin and linoleic acid, vaccenic acid, or oleic acid was further investigated using flow cytometry and found to induce cell death resembling apoptosis on Jurkat cells. Practical applications: Cytotoxic complexes of α-lactalbumin and several different fatty acids could be produced. The cytotoxicity of all the variants is similar to that previously determined for α-lactalbumin/oleic acid complexes.This work was supported by the Food Institutional Research Measure (FIRM, project no. 08RDTMFRC650) of the Department of Agriculture, Fisheries, and Food, Ireland

    Deconfinement phase transition in a two-dimensional model of interacting 2×22\times 2 plaquettes

    Full text link
    A two-dimensional model of interacting plaquettes is studied by means of the real space renormalization group approach. Interactions between the plaquettes are mediated solely by spin excitations on the plaquettes. Depending on the plaquette-plaquette coupling JJ, we find two regimes: "confinement" Jc<J1J_c< J\leq 1, where the singlet ground state forms an infinite ("confined") cluster in the thermodynamical limit. Here the singlet-triplet gap vanishes, which is the signature for long range spin-spin correlators. "deconfinement" 0J<Jc0\leq J< J_c, where the singlet ground state "deconfines" - i.e. factorizes - into finite nn-clusters of size 2n×2n2^n\times 2^n, with nnc(J)n\leq n_c(J). Here the singlet-triplet gap is finite. The critical value turns out to be Jc=0.473528..J_c=0.473528...Comment: 7 pages, 11 figures, RevTex, corrected typo

    Thermodynamic properties of the two-dimensional S=1/2 Heisenberg antiferromagnet coupled to bond phonons

    Full text link
    By applying a quantum Monte Carlo procedure based on the loop algorithm we investigate thermodynamic properties of the two-dimensional antiferromagnetic S=1/2 Heisenberg model coupled to Einstein phonons on the bonds. The temperature dependence of the magnetic susceptibility, mean phonon occupation numbers and the specific heat are discussed in detail. We study the spin correlation function both in the regime of weak and strong spin phonon coupling (coupling constants g=0.1, w=8J and g=2, w=2J, respectively). A finite size scaling analysis of the correlation length indicates that in both cases long range Neel order is established in the ground state.Comment: 10 pages, 13 figure

    HAMLET Binding to α-Actinin Facilitates Tumor Cell Detachment

    Get PDF
    Cell adhesion is tightly regulated by specific molecular interactions and detachment from the extracellular matrix modifies proliferation and survival. HAMLET (Human Alpha-lactalbumin Made LEthal to Tumor cells) is a protein-lipid complex with tumoricidal activity that also triggers tumor cell detachment in vitro and in vivo, suggesting that molecular interactions defining detachment are perturbed in cancer cells. To identify such interactions, cell membrane extracts were used in Far-western blots and HAMLET was shown to bind α-actinins; major F-actin cross-linking proteins and focal adhesion constituents. Synthetic peptide mapping revealed that HAMLET binds to the N-terminal actin-binding domain as well as the integrin-binding domain of α-actinin-4. By co-immunoprecipitation of extracts from HAMLET-treated cancer cells, an interaction with α-actinin-1 and -4 was observed. Inhibition of α-actinin-1 and α-actinin-4 expression by siRNA transfection increased detachment, while α-actinin-4-GFP over-expression significantly delayed rounding up and detachment of tumor cells in response to HAMLET. In response to HAMLET, adherent tumor cells rounded up and detached, suggesting a loss of the actin cytoskeletal organization. These changes were accompanied by a reduction in β1 integrin staining and a decrease in FAK and ERK1/2 phosphorylation, consistent with a disruption of integrin-dependent cell adhesion signaling. Detachment per se did not increase cell death during the 22 hour experimental period, regardless of α-actinin-4 and α-actinin-1 expression levels but adherent cells with low α-actinin levels showed increased death in response to HAMLET. The results suggest that the interaction between HAMLET and α-actinins promotes tumor cell detachment. As α-actinins also associate with signaling molecules, cytoplasmic domains of transmembrane receptors and ion channels, additional α-actinin-dependent mechanisms are discussed

    Recurrent and multiple bladder tumors show conserved expression profiles

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Urothelial carcinomas originate from the epithelial cells of the inner lining of the bladder and may appear as single or as multiple synchronous tumors. Patients with urothelial carcinomas frequently show recurrences after treatment making follow-up necessary. The leading hypothesis explaining the origin of meta- and synchronous tumors assumes a monoclonal origin. However, the genetic relationship among consecutive tumors has been shown to be complex in as much as the genetic evolution does not adhere to the chronological appearance of the metachronous tumors. Consequently, genetically less evolved tumors may appear chronologically later than genetically related but more evolved tumors.</p> <p>Methods</p> <p>Forty-nine meta- or synchronous urothelial tumors from 22 patients were analyzed using expression profiling, conventional CGH, LOH, and mutation analyses.</p> <p>Results</p> <p>We show by CGH that partial chromosomal losses in the initial tumors may not be present in the recurring tumors, by LOH that different haplotypes may be lost and that detected regions of LOH may be smaller in recurring tumors, and that mutations present in the initial tumor may not be present in the recurring ones. In contrast we show that despite apparent genomic differences, the recurrent and multiple bladder tumors from the same patients display remarkably similar expression profiles.</p> <p>Conclusion</p> <p>Our findings show that even though the vast majority of the analyzed meta- and synchronous tumors from the same patients are not likely to have originated directly from the preceding tumor they still show remarkably similar expressions profiles. The presented data suggests that an expression profile is established early in tumor development and that this profile is stable and maintained in recurring tumors.</p

    Changes in Proteasome Structure and Function Caused by HAMLET in Tumor Cells

    Get PDF
    BACKGROUND: Proteasomes control the level of endogenous unfolded proteins by degrading them in the proteolytic core. Insufficient degradation due to altered protein structure or proteasome inhibition may trigger cell death. This study examined the proteasome response to HAMLET, a partially unfolded protein-lipid complex, which is internalized by tumor cells and triggers cell death. METHODOLOGY/PRINCIPAL FINDINGS: HAMLET bound directly to isolated 20S proteasomes in vitro and in tumor cells significant co-localization of HAMLET and 20S proteasomes was detected by confocal microscopy. This interaction was confirmed by co-immunoprecipitation from extracts of HAMLET-treated tumor cells. HAMLET resisted in vitro degradation by proteasomal enzymes and degradation by intact 20S proteasomes was slow compared to fatty acid-free, partially unfolded alpha-lactalbumin. After a brief activation, HAMLET inhibited proteasome activity in vitro and in parallel a change in proteasome structure occurred, with modifications of catalytic (beta1 and beta5) and structural subunits (alpha2, alpha3, alpha6 and beta3). Proteasome inhibition was confirmed in extracts from HAMLET-treated cells and there were indications of proteasome fragmentation in HAMLET-treated cells. CONCLUSIONS/SIGNIFICANCE: The results suggest that internalized HAMLET is targeted to 20S proteasomes, that the complex resists degradation, inhibits proteasome activity and perturbs proteasome structure. We speculate that perturbations of proteasome structure might contribute to the cytotoxic effects of unfolded protein complexes that invade host cells
    corecore