57 research outputs found

    Characterization of BAFF and APRIL subfamily receptors in rainbow trout (Oncorhynchus mykiss). Potential role of the BAFF/APRIL axis in the pathogenesis of proliferative kidney disease

    Get PDF
    We would like to thank Lucia González for technical assistance and Rosario Castro for producing some of the cDNAs used in this study. This work was supported by the European Research Council (ERC Starting Grant 2011 280469) and by the European Commission under the 7th Framework Programme for Research and Technological Development (FP7) of the European Union (Grant Agreement 311993 TARGETFISH) and under the Horizon H2020 research and innovation programme (Grant H2020-634429 ParaFishControl). This work was also partially funded by project AGL2014-54456-JIN from the Spanish Ministry of Economy and Competitiveness (MINECO). JWH was supported by the Swiss National Science Foundation (grant reference CRSII3_147649-1).Peer reviewedPublisher PD

    Rainbow trout CK9, a CCL25-like ancient chemokine that attracts and regulates B cells and macrophages, the main antigen presenting cells in fish

    Get PDF
    ACKNOWLEDGMENTS The authors want to thank Dr. Oriol Sunyer for the anti-IgT and Dr. Uwe Fischer for the anti-CD8 antibodies used in this study. We also want to acknowledge Lucía González Torres for technical assistance. GRANT SUPPORT This work was supported by the European Research Council (ERC Starting Grant 2011 280469), by the European Commission under the 7th Framework Programme for Research and Technological Development (FP7) of the European Union (Grant Agreement 311993 TARGETFISH) and by project AGL2011-29676 from the Spanish Ministry of Economy and Competitiveness (MINECO). C. Aquilino was supported by a MINECO PhD student fellowshipPeer reviewedPublisher PD

    CpG Oligodeoxynucleotides Modulate Innate and Adaptive Functions of IgM+ B Cells in Rainbow Trout

    Get PDF
    Oligodeoxynucleotides (ODN) containing unmethylated CpG motifs have been widely postulated as vaccine adjuvants both in mammals and teleost fish. However, to date, the effects that CpGs provoke on cells of the adaptive immune system remain mostly unexplored in fish. Given that rainbow trout (Oncorhynchus mykiss) IgM+ B cells from spleen and blood transcribe high levels of toll like receptor 9 (TLR9), the receptor responsible for CpG detection in mammals, in the current work, we have investigated the effects of CpGs on both spleen and blood IgM+ B cells from this species. CpGs were shown to exert strong proliferative effects on both spleen and blood IgM+ B cells, also increasing their survival. The fact that CpGs increase the size of IgM+ B cells, reduce the expression of surface IgM and IgD and up-regulate the number of IgM-secreting cells strongly suggest that IgM+ B cells differentiate to plasmablasts/plasma cells in response to CpG stimulation. Additionally, CpGs were shown to modulate the antigen presenting capacities of trout IgM+ B cells through an increased surface MHC II expression and transcriptional up-regulation of co-stimulatory molecules, although in this case, significant differences were observed between the effects exerted on spleen and blood cells. Similarly, differences were observed between spleen and blood IgM+ B cells when CpG stimulation was combined with B cell receptor (BCR) cross-linking. Finally, CpGs were also shown to affect innate functions of teleost IgM+ B cells such as their phagocytic capacity. These results demonstrate that CpGs regulate many adaptive and innate functions of teleost B cells, supporting their inclusion as adjuvants in novel vaccine formulations

    Distinct Differentiation Programs Triggered by IL-6 And LPS in Teleost IgM+ B Cells in the Absence of Germinal Centers

    Get PDF
    We would like to thank Lucia Gonzalez and Maria Sanz for technical assistance. Professor Øystein Evensen is also acknowledged for providing us with the inactivated IPNV. This work was supported by the European Research Council (ERC Starting Grant 2011 280469) and by the European Commission under the 7th Framework Programme for Research and Technological Development (FP7) of the European Union (Grant Agreement 311993 TARGETFISH). T. W. received funding from the MASTS pooling initiative (The Marine Alliance for Science and Technology for Scotland). MASTS is funded by the Scottish Funding Council (grant reference HR09011).Peer reviewedPublisher PD

    Antiviral activity of lauryl gallate against animal viruses

    Get PDF
    BACKGROUND: Antiviral compounds are needed in the control of many animal and human diseases. METHODS: We analysed the effect of the antitumoural drug lauryl gallate on the infectivity of the African swine fever virus among other DNA (herpes simplex and vaccinia) and RNA (influenza, porcine transmissible gastroenteritis and Sindbis) viruses, paying attention to its effect on the viability of the corresponding host cells. RESULTS: Viral production was strongly inhibited in different cell lines at non-toxic concentrations of the drug (1-10 microM), reducing the titres 3->5 log units depending on the multiplicity of infection. In our model system (African swine fever virus in Vero cells), the addition of the drug 1 h before virus adsorption completely abolished virus productivity in a one-step growth virus cycle. Interestingly, no inhibitory effect was observed when lauryl gallate was added after 5-8 h post-infection. Both cellular and viral DNA synthesis and late viral transcription were inhibited by the drug; however, the early viral protein synthesis and the virus-mediated increase of p53 remained unaffected. Activation of the apoptotic effector caspase-3 was not detected after lauryl gallate treatment of Vero cells. Furthermore, the presence of the drug abrogated the activation of this protease induced by the virus infection. CONCLUSIONS: Lauryl gallate is a powerful antiviral agent against several pathogens of clinical and veterinary importance. The overall results indicate that a cellular factor or function might be the target of the antiviral action of alkyl gallates.This work was supported by grants from Ministerio de Educación y Ciencia, Spain (BFU2004-00298/BMC), Laboratorios del Dr Esteve, Barcelona, Spain and by institutional grants from Fundación Ramón Areces, Madrid, Spain and Banco Central Hispano, Madrid, Spain. CH was a fellow from Fundación Ramón Areces. AGG was funded by Centro de Investigación en Sanidad Animal (CISA), Valdeolmos, Spain.N

    The C-type lectin homologue gene (EP153R) of African swine fever virus inhibits apoptosis both in virus infection and in heterologous expression

    Get PDF
    AbstractThe open reading frame EP153R of African swine fever virus (ASFV) encodes a nonessential protein that has been involved in the hemadsorption process induced in virus-infected cells. By the use of a virus deletion mutant lacking the EP153R gene, we have detected, in several virus-sensitive cells, increased levels of caspase-3 and cell death as compared with those obtained after infection with the parental BA71V strain. Both transient and stable expression of the EP153R gene in Vero or COS cells resulted in a partial protection of the transfected lines from the apoptosis induced in response to virus infection or external stimuli. The presence of gene EP153R resulted in a reduction of the transactivating activity of the cellular protein p53 in Vero cell cultures in which apoptosis was induced by virus infection or staurosporine treatment. This is to our knowledge the first description of a viral C-type lectin with anti-apoptotic properties

    Dysregulation of B Cell Activity During Proliferative Kidney Disease in Rainbow Trout

    Get PDF
    This work was supported by the European Research Council (ERC Consolidator Grant 2016 725061 TEMUBLYM) and the European Commission under the H2020 Programme (Grant H2020-634429 ParaFishControl). IE was recipient of APOSTD/2016/037 grant by the “Generalitat Valenciana” and YH was recipient of a PhD Studentship from the Ministry of Education, Republic of China (Taiwan). JWH was supported by BBSRC grant BB/K009125/1 and SNSF grant CRSII3_147649-1. PDR was funded by grant T1-BIO-1672 from the “Comunidad de Madrid”.Peer reviewedPublisher PD
    corecore