193 research outputs found

    Control theory for principled heap sizing

    Get PDF
    We propose a new, principled approach to adaptive heap sizing based on control theory. We review current state-of-the-art heap sizing mechanisms, as deployed in Jikes RVM and HotSpot. We then formulate heap sizing as a control problem, apply and tune a standard controller algorithm, and evaluate its performance on a set of well-known benchmarks. We find our controller adapts the heap size more responsively than existing mechanisms. This responsiveness allows tighter virtual machine memory footprints while preserving target application throughput, which is ideal for both embedded and utility computing domains. In short, we argue that formal, systematic approaches to memory management should be replacing ad-hoc heuristics as the discipline matures. Control-theoretic heap sizing is one such systematic approach

    Evidence that Fetal Death is Associated with Placental Aging

    Get PDF
    Background: The risk of unexplained fetal death or stillbirth increases late in pregnancy, suggesting that placental aging is an etiological factor. Aging is associated with oxidative damage to DNA, RNA, and lipids. We hypothesized that placentas at >41 completed weeks of gestation (late-term) would show changes consistent with aging that would also be present in placentas associated with stillbirths. Objective: We sought to determine whether placentas from late-term pregnancies and unexplained stillbirth show oxidative damage and other biochemical signs of aging. We also aimed to develop an in vitro term placental explant culture model to test the aging pathways. Study Design: We collected placentas from women at 37-39 weeksā€™ gestation (early-term and term), late-term, and with unexplained stillbirth. We used immunohistochemistry to compare the 3 groups for: DNA/RNA oxidation (8-hydroxy-deoxyguanosine), lysosomal distribution (lysosome-associated membrane protein 2), lipid oxidation (4-hydroxynonenal), and autophagosome size (microtubule-associated proteins 1A/1B light chain 3B, LC3B). The expression of aldehyde oxidase 1 was measured by real-time polymerase chain reaction. Using a placental explant culture model, we tested the hypothesis that aldehyde oxidase 1 mediates oxidative damage to lipids in the placenta. Results: Placentas from late-term pregnancies show increased aldehyde oxidase 1 expression, oxidation of DNA/RNA and lipid, perinuclear location of lysosomes, and larger autophagosomes compared to placentas from women delivered at 37-39 weeks. Stillbirth-associated placentas showed similar changes in oxidation of DNA/RNA and lipid, lysosomal location, and autophagosome size to placentas from late-term. Placental explants from term deliveries cultured in serum-free medium also showed evidence of oxidation of lipid, perinuclear lysosomes, and larger autophagosomes, changes that were blocked by the G-protein-coupled estrogen receptor 1 agonist G1, while the oxidation of lipid was blocked by the aldehyde oxidase 1 inhibitor raloxifene. Conclusion: Our data are consistent with a role for aldehyde oxidase 1 and G-protein-coupled estrogen receptor 1 in mediating aging of the placenta that may contribute to stillbirth. The placenta is a tractable model of aging in human tissue

    The Submillimeter Bump in Sgr A* from Relativistic MHD Simulations

    Full text link
    Recent high resolution observations of the Galactic center black hole allow for direct comparison with accretion disk simulations. We compare two-temperature synchrotron emission models from three dimensional, general relativistic magnetohydrodynamic simulations to millimeter observations of Sgr A*. Fits to very long baseline interferometry and spectral index measurements disfavor the monochromatic face-on black hole shadow models from our previous work. Inclination angles \le 20 degrees are ruled out to 3 \sigma. We estimate the inclination and position angles of the black hole, as well as the electron temperature of the accretion flow and the accretion rate, to be i=50+35-15 degrees, \xi=-23+97-22 degrees, T_e=(5.4 +/- 3.0)x10^10 K and Mdot=(5+15-2)x10^-9 M_sun / yr respectively, with 90% confidence. The black hole shadow is unobscured in all best fit models, and may be detected by observations on baselines between Chile and California, Arizona or Mexico at 1.3mm or .87mm either through direct sampling of the visibility amplitude or using closure phase information. Millimeter flaring behavior consistent with the observations is present in all viable models, and is caused by magnetic turbulence in the inner radii of the accretion flow. The variability at optically thin frequencies is strongly correlated with that in the accretion rate. The simulations provide a universal picture of the 1.3mm emission region as a small region near the midplane in the inner radii of the accretion flow, which is roughly isothermal and has \nu/\nu_c ~ 1-20, where \nu_c is the critical frequency for thermal synchrotron emission.Comment: 14 pages, 17 figures, accepted by Ap

    A Data Set for Fault Detection Research on Component-Based Robotic Systems

    Get PDF
    Wienke J, Meyer zu Borgsen S, Wrede S. A Data Set for Fault Detection Research on Component-Based Robotic Systems. In: Alboul L, Damian D, Aitken JM, eds. Towards Autonomous Robotic Systems. Lecture Notes in Artificial Intelligence. Vol 9716. Springer International Publishing; 2016: 339-350.Fault detection and identification methods (FDI) are an important aspect for ensuring consistent behavior of technical systems. In robotics FDI promises to improve the autonomy and robustness. Existing FDI research in robotics mostly focused on faults in specific areas, like sensor faults. While there is FDI research also on the overarching software system, common data sets to benchmark such solutions do not exist. In this paper we present a data set for FDI research on robot software systems to bridge this gap. We have recorded an HRI scenario with our RoboCup@Home platform and induced diverse empirically grounded faults using a novel, structured method. The recordings include the complete event-based communication of the system as well as detailed performance counters for all system components and exact ground-truth information on the induced faults. The resulting data set is a challenging benchmark for FDI research in robotics which is publicly available

    Dynamic graphical instructions result in improved attitudes and decreased task completion time in humanāˆ’robot co-working: an experimental manufacturing study

    Get PDF
    Collaborative robots offer opportunities to increase the sustainability of work and workforces by increasing productivity, quality, and efficiency, whilst removing workers from hazardous, repetitive, and strenuous tasks. They also offer opportunities for increasing accessibility to work, supporting those who may otherwise be disadvantaged through age, ability, gender, or other characteristics. However, to maximise the benefits, employers must overcome negative attitudes toward, and a lack of confidence in, the technology, and must take steps to reduce errors arising from misuse. This study explores how dynamic graphical signage could be employed to address these issues in a manufacturing task. Forty employees from one UK manufacturing company participated in a field experiment to complete a precision pick-and-place task working in conjunction with a collaborative robotic arm. Twenty-one participants completed the task with the support of dynamic graphical signage that provided information about the robot and the activity, while the rest completed the same task with no signage. The presence of the signage improved the completion time of the task as well as reducing negative attitudes towards the robots. Furthermore, participants provided with no signage had worse outcome expectancies as a function of their response time. Our results indicate that the provision of instructional information conveyed through appropriate graphical signage can improve task efficiency and user wellbeing, contributing to greater workforce sustainability. The findings will be of interest for companies introducing collaborative robots as well as those wanting to improve their workforce wellbeing and technology acceptance

    Robots claiming space: gauging public reaction using computer vision techniques

    Get PDF
    Handling delicate crops without damaging or bruising is a challenge facing the au-tomation of tasks within the agri-food sector, which encourages the utilization of soft grippers that are inherently safe and passively compliant. In this paper we present a brief overview of the development of a printable soft gripper integrated with printable bend sensors. The softness of the gripper fingers allows delicate crops to be grasped gently, while the bend sensors are calibrated to measure bending and detect contact. This way the soft gripper not only benefits from the passive compliance of its soft fingers, but also demonstrates a sensor-guided approach for improved grasp control
    • ā€¦
    corecore