8 research outputs found

    Déclaration d'Errachidia et lignes directrices pour le développement durable des écosystèmes oasiens.

    Get PDF

    Beneficial Effects of Alpha-Lipoic Acid on Hypertension, Visceral Obesity, UCP-1 Expression and Oxidative Stress in Zucker Diabetic Fatty Rats

    No full text
    Evidence suggests that oxidative stress plays a major role in the development of metabolic syndrome. This study aims to investigate whether α-lipoic acid (LA), a potent antioxidant, could exert beneficial outcomes in Zucker diabetic fatty (ZDF) rats. Male 6-week-old ZDF rats and their lean counterparts (ZL) were fed for six weeks with a standard diet or a chow diet supplemented with LA (1 g/kg feed). At 12 weeks of age, ZDF rats exhibited an increase in systolic blood pressure, epididymal fat weight per body weight, hyperglycemia, hyperinsulinemia, insulin resistance (HOMA index), adipocyte hypertrophy and a rise in basal superoxide anion (O2•−) production in gastrocnemius muscle and a downregulation of epididymal uncoupled protein-1 (UCP-1) protein staining. Treatment with LA prevented the development of hypertension, the rise in whole body weight and O2•− production in gastrocnemius muscle, but failed to affect insulin resistance, hyperglycemia and hyperinsulinemia in ZDF rats. LA treatment resulted in a noticeable increase of pancreatic weight and a further adipocyte hypertrophy, along with a decrease in epididymal fat weight per body weight ratio associated with an upregulation of epididymal UCP-1 protein staining in ZDF rats. These findings suggest that LA was efficacious in preventing the development of hypertension, which could be related to its antioxidant properties. The anti-visceral obesity effect of LA appears to be mediated by its antioxidant properties and the induction of UCP-1 protein at the adipose tissue level in ZDF rats. Disorders of glucose metabolism appear, however, to be mediated by other unrelated mechanisms in this model of metabolic syndrome

    Qualitative assessment of the waters of the coastal aquifer Ghis-Nekor (Central Rif, Northern Morocco) in view of agricultural use

    No full text
    The rainfall irregularity in the Al-Hoceima area places the Ghis-Nekor coastal aquifer as a primary resource for water supply. However, it is of paramount priority to adopt management and optimization plans that can mitigate the effects of the irrational use of the resource and the deterioration of its quality in the region of our study. In order to study the alteration aspects of this aquifer, 26 wells were sampled and their suitability for irrigation was assessed. The sodium adsorption rate (SAR) values indicate that most groundwater samples fall into the risk classes of high salinity and low sodium (C3-S1) and high salinity and medium sodium (C3-S2). The results also show a medium to high alkalinity risk due to the high concentration of HCO3-. The excess of salts is largely due to the intensive exploitation of groundwater and to the phenomenon of salt-water intrusion into the coastal karst aquifer. As a result, the quality of groundwater is not adapted to sustainable agricultural production and soil balance, which requires controlled monitoring to ensure its rational use with a view to the sustainable development of the region

    Pollution Vulnerability of the Ghiss Nekkor Alluvial Aquifer in Al-Hoceima (Morocco), Using GIS-Based DRASTIC Model

    Get PDF
    Groundwater resources of the alluvial aquifer Ghiss Nekkor, which covers an area of 100 km2, are the main source of domestic and agricultural freshwater supply in the region of Al Hoceima in Morocco. Due to human activities (overexploitation, increase in agricultural activity), this alluvial aquifer has become very sensitive to chemical pollution. The principal objective of this current study is to develop and implement a calibration method to assess, map, and estimate the vulnerability of the Ghiss Nekkor alluvial aquifer to pollution risk. In this work, the GIS-based DRASTIC model was used to estimate the inherent vulnerability to contamination of the Ghiss Nekkor alluvial aquifer with seven standard hydrogeological parameters. Nitrate (NO3) and electrical conductivity (EC) data were used to validate the DRASTIC map. The results of the vulnerability map analysis show that the vulnerability to contaminants varies from non-existent in the southwestern part of the plain (7.3% of the total area), to very high (14.5%). The vulnerability is moderate in the central and northeastern areas (26.9%), while it is high in the other areas (17.5%). Furthermore, the most sensitive areas are mainly concentrated near the coastal strip and the central plain on both sides of the Nekkor River. In these areas, the NO3 and EC values are above the maximum allowable limit of the World Health Organization. The results suggest that the DRASTIC model can be an effective tool for decision-makers concerned about managing groundwater sustainability

    Climate Change and Water Resources Management in Ghis-Nekor Watershed (North of Morocco) – A Comprehensive Analysis Using SPI, RDI and DI Indices

    No full text
    Morocco is currently facing significant challenges due to the ever–changing climate, with its critical water sources crucial for agriculture, economy, and daily life being greatly affected. In order to thoroughly understand the impact of climate change on the Ghis–Nekor watershed, an in–depth study spanning 38 years (1978–2016) was conducted. This involved examining meteorological data from three stations and utilizing advanced indices such as SPI, RDI, and DI. The findings of this study reveal prominent shifts in precipitation patterns, indicating a vulnerability in the region. While there was a general increase in annual rainfall during the specified time period, a sharp decline was observed post–2008. Further analysis of drought confirmed the presence of persistent dry spells and recurring episodes, highlighting the urgent need for effective water management strategies. These crucial findings must be considered by decision–makers for successful climate adaptation, emphasizing the crucial role played by this study in mitigating the effects of climate change

    <i>Thymus atlanticus</i>: A Source of Nutrients with Numerous Health Benefits and Important Therapeutic Potential for Age-Related Diseases

    No full text
    Thymus atlanticus (Lamiaceae) is a plant endemic to the Mediterranean basin that is found in significant quantities in the arid regions of Morocco. Thymus atlanticus is used in traditional medicine to treat infectious and non-infectious diseases. It is also used for the isolation of essential oils and for the seasoning of many dishes in the Mediterranean diet. The major constituents of Thymus atlanticus are saponins, flavonoids, tannins, alkaloids, various simple and hydroxycinnamic phenolic compounds, and terpene compounds. Several of these compounds act on signaling pathways of oxidative stress, inflammation, and blood sugar, which are parameters often dysregulated during aging. Due to its physiochemical characteristics and biological activities, Thymus atlanticus could be used for the prevention and/or treatment of age-related diseases. These different aspects are treated in the present review, and we focused on phytochemistry and major age-related diseases: dyslipidemia, cardiovascular diseases, and type 2 diabetes
    corecore