26 research outputs found

    Rohetaristu kui elurikkuse korraldamise vahend maastikul

    Get PDF
    EU 2010 Biodiversity Baseline report of the European Environment Agency1 andmetel on maakasutuse muutustest tingitud elupaikade killustumine, vaesustumine ja hävimine põhilisi elurikkuse kao käivitajaid Euroopas. Viimastel kümnenditel on suured maaalad asustatud linnadena või läbi lõigatud transporditaristute poolt. Samas traditsioonilised maakasutuse viisid, eriti põllumajanduses ja metsanduses, on asendatud intensiivsemate, mehhaniseeritud ja tööstuslike tegevustega. Umbes 8000 km² e 5 % EL maast on võetud tehiskasutusse ainult viimase kümne aastaga. Aastast 1990 aastani 2003 on rajatud 15000 km uusi maanteid. Selle tulemusena loetakse ligikaudu 30 % Euroopa territooriumist väga killustunuks. Kõrge killustumus on tõstunud ökosüsteemide haavatavust hajusate välissurvetele nagu kuivendamine, toitainete rohkenemine ja hapestumine. Peale selle, takistunud rände- ja levivõimaluste tõttu loomade ja taimede isoleeritud asurkonnad on enam haavatavad kohalike väljasuremiste tõttu. Nende ilmingute vastutoimena on Euroopas algatatud mitmeid tegevusi, mis püüavad lahendada elupaikade killustumise ja sidususe probleeme pakkudes välja kõrge elurikkusega alade ökoloogiliselt sidusaid võrgustikke. Kolmandal „Keskkond Euroopale“ ministrite konverentsil 1995 Sofias otsustasid 54 Euroopa maad rajada 2005. aastaks Üle-euroopalise ökoloogilise võrgustiku (Pan-European Ecological Network – PEEN). Selle võrgustiku eesmärk oli raamida nii füüslist võrgustikku kui ka ühiseid sellesuunalisi üle-euroopalisi tegevusi. Tugipunktideks võeti erinevaid olemasolevaid algatusi, eriti aga Berni konventsiooni Emerald võrgustikku ning linnu- ja loodusdirektiivi Natura 2000 võrgustikku. 1995. a alates laienes Euroopa Liit 27 liikmesmaani, tänu sellele on Natura aladega (arvestuslikult 26000 tk) kaetud ligikaudu 18 % ühenduse pindalast. Seega on EL olemas ühine nurgakivi elurikkuse ja looduspärandi kaitseks. EL natura-seadustik püüab saavutada Natura-alade ökoloogilist sidusust ja lõimumist ruumilise planeerimisega, praegu küll ilma seadusepõhise kohustuseta. Loodusdirektiivi 10. artikli kohaselt peavad liikmesmaad ergutama oma maakasutuse ja arengupoliitikas loodusliku loomastiku ja taimestiku jaoks enim oluliste maastikutunnuste korraldamist (nt rände, levi ja geneetilise informatsiooni vahetamise jaoks vältimatud maastiku joon- ja pidevstruktuurid ning astmekivid), et parandada ökoloogilise võrgustiku sidusust. Sarnasetl linnudirektiivi 3. artikkel kohustab liikmesmaid võtma meetmeid, et kaitsta, alal hoida või taastada direktiivi lisa 1 liikide elupaikade piisav mitmekesisus ja suurus. Vaatamata ülanimetatud regulatsioonidele jätkub elurikkuse kadumine ja ökosüsteemide allakäik. Rohetaristu kontseptsioon on käige värskem EL looduskaitsepoliitika vastus ülalkirjeldatud trendide muutmiseks ning hiljuti seatud EL Elurikkuse strateegia aastani 2020 seatud eesmärkide saavutamiseks. See idee põhineb olemasolevate instrumentide (nt Natura 2000) kasutamisele, omades siiski laiemat haaret kuna sisaldab elurikkust ja ökosüsteeme ka väljaspool kaitsealasid. See arendab erinevate maakasutust mõjutavate majandussektorite integreerumist, et tagada ökosüsteemide elastsus ja ökosüsteemi hüviste jätkuv pakkumine.Materjal on valminud Euroopa Liidu programmi INTERREG IVC projekti „Regionaalne poliitika ja infovahetus elurikkuse ja maastikulise mitmekesisuse kaitseks ja väärtustamiseks Euroopas (REVERSE)“ raames 2012. aastal. Projekti toetas Keskkonnainvesteeringute Keskus

    Remotely Sensed Land Surface Temperature Can Be Used to Estimate Ecosystem Respiration in Intact and Disturbed Northern Peatlands

    Get PDF
    https://doi.org/10.1029/2021JG006411Remotely sensed land surface temperature (LST) enables global modeling and monitoring of CO2 fluxes from peatlands. We aimed to provide the first overview of the potential for using LST to monitor ecosystem respiration (R-eco) in disturbed (drained and extracted) peatlands. We used chamber-measured data (2017-2020) from five disturbed and two intact northern peatlands and LST data from Landsat 7, 8, and MODIS missions. First, we studied the strength of the relationships between fluxes and their in situ drivers (i.e., thermal and moisture conditions). Second, we examined the association between LST and in situ temperatures. Third, we compared chamber-measured R-eco with the modeled R-eco driven by in situ measured water table depth and (a) in situ measured surface temperature and (b) remotely sensed MODIS LST data. In situ temperatures were a stronger driver of CO2 fluxes in disturbed sites (repeated measures correlation rmR = 0.8-0.9) than in intact ones (rmR = 0.5-0.8). LST had a higher association with in situ measured temperatures in disturbed sites (mean rmR = 0.79 for MODIS) and weaker in the intact (hummocks and hollows) peatlands (mean rmR = 0.38 for Landsat and 0.48 for MODIS). R-eco models driven by MODIS LST and in situ surface temperature yielded similar accuracy: R-2 was 0.27, 0.66, and 0.67 and 0.29, 0.70, and 0.66 for intact and for drained and extracted sites, respectively. Overall, these findings suggest the applicability of LST as a proxy of the thermal regime in R-eco models, particularly for disturbed peatlands.Peer reviewe

    A framework for habitat monitoring and climate change modelling: construction and validation of the Environmental Stratification of Estonia

    Get PDF
    Environmental stratifications provide the framework for efficient surveillance and monitoring of biodiversity and ecological resources, as well as modelling exercises. An obstacle for agricultural landscape monitoring in Estonia has been the lack of a framework for the objective selection of monitoring sites. This paper describes the construction and testing of the Environmental Stratification of Estonia (ESE). Principal components analysis was used to select the variables that capture the most amount of variation. Seven climate variables and topography were selected and subsequently subjected to the ISODATA clustering routine in order to produce relatively homogeneous environmental strata. The ESE contains eight strata, which have been described in terms of soil, land cover and climatic parameters. In order to assess the reliability of the stratification procedure for the selection of monitoring sites, the ESE was compared with the previous map of Landscape Regions of Estonia and correlated with five environmental data sets. All correlations were significant. The stratification has therefore already been used to extend the current series of samples in agricultural landscapes into a more statistically robust series of monitoring sites. The potential for applying climate change scenarios to assess the shifts in the strata and associated ecological impacts is also examined.</p

    Wintertime Greenhouse Gas Fluxes in Hemiboreal Drained Peatlands

    Get PDF
    Funding Information: Funding: This study was supported by the Estonian Research Council (IUT2-16 and PRG352); the EU through the European Regional Development Fund (Centre of Excellence EcolChange, Estonia) and by the Estonian State Forest Management Centre (projects LLOOM13056 “Carbon and nitrogen cycling in forests with altered water regime “, 2013–2016 and LLTOM17250 “Water level restoration in cut-away peatlands: development of integrated monitoring methods and monitoring”, 2017–2023).Peer reviewedPublisher PD

    Key sustainability issues and the spatial classification of sensitive regions in Europe

    Get PDF
    Cross-cutting environmental, social and economic changes may have harsh impacts on sensitive regions. To address sustainability issues by governmental policy measures properly, the geographical delineation of sensitive regions is essential. With reference to the European impact assessment guidelines from 2005, sensitive regions were identified by using environmental, social and economic data and by applying cluster analysis, United Nation Environmental Policy priorities and expert knowledge. On a regionalised ‘Nomenclature of Territorial Units for Statistics’ (NUTS) level and for pre-defined sensitive region types (post-industrial zones, mountains, coasts and islands) 31 % of the European area was identified as sensitive. However, the delineation mainly referred to social and economic issues since the regional data bases on environmental indicators are limited and do not allow the separation of medium-term vital classes of sensitive regions. Overall, the sensitive regions showed indicator values differing from the EU- 25 average.peer-reviewe

    Key sustainability issues and the spatial classification of sensitive regions in Europe

    Get PDF
    Severe and cross-cutting environmental, social and economic changes have particular impact in sensitive regions and the geographical delineation of sensitive regions is essential to address sustainability issues by policy measures. Based on the European impact assessment guidelines from 2005, sensitive regions were identified using cluster analysis, UNEP priorities and expert knowledge. On a regionalised NUTS level and for pre-defined sensitive region types (post-industrial zones, mountains, coasts and islands) 31 % of Europe’s area was identified as sensitive. However, the delineation mainly referred mainly to social and economic issues since the regionalised data base on environmental indicators and including issues on soil quality is limited and does not allow the separation of medium-term vital clusters. Some visions on short-term and long-term perspectives will be discussed to ensure sustainable development in sensitive regions.peer-reviewe
    corecore