5 research outputs found

    Bone Marrow Aspiration Does Not Induce a Measurable Pain Response Compared to Sham Procedure

    Get PDF
    Bone marrow is commonly collected from horses for regenerative medicine applications. Little information is available regarding pain experienced by the horse during bone marrow aspiration. The objective of this study was to characterize horse reaction and pain response during bone marrow aspiration (BMA) compared to a sham (SHAM) procedure. We hypothesized there would be significantly greater horse reaction or pain response measured by salivary cortisol, heart rate variability, and depth and duration of sedation between BMA and SHAM. Twelve university owned horses underwent a BMA and sham procedure, 4 weeks apart in a randomized cross-over design, while sedated with 0.4 mg/kg xylazine hydrochloride. As measures of sedation depth, head height was recorded and sedation level was scored at specific procedural time points. Salivary cortisol was measured immediately before and 2 h after each procedure. Heart rate variability was assessed before, during, and after each procedure. There were no differences in head height, sedation score, or salivary cortisol between groups. No differences were noted between groups in heart rate variability before or during the procedure, but there was a significant decrease in low frequency/high frequency (LF/HF) ratio after the procedure in the BMA group. Over time, there was a significant reduction in LF/HF ratio during the procedure in both groups. Overall, BMA from the sternum did not result in a measurable pain response during, or in the 2 h following the procedure, in comparison to a sham procedure

    In vitro MSC function is related to clinical reaction in vivo

    No full text
    Abstract Background We recently demonstrated that intracellular xenogen-contaminated autologous MSCs (FBS) and non-xenogen-contaminated allogeneic (ALLO) MSCs caused an adverse clinical response after repeated intra-articular injection in horses, whereas autologous (AUTO) MSCs did not. Our current objective was to use clinical data from the previous study to compare MSC stemness against adverse response indicated by synovial total nucleated cell count (TNCC) following intra-articular MSC injection. Methods Stemness, quantified by a trilineage differentiation (TLD) score; immunomodulation, quantified by mixed lymphocyte reactions (MLRs); and degree of MHCI expression, quantified by mean fluorescent intensity (MFI); were correlated to the synovial TNCC 24 h after naïve and primed injection. Results There was a trend of a negative correlation (p = 0.21, r = − 0.44) between TLD score and TNCC after primed injection in the ALLO group. Within the ALLO group only, there was a significant positive correlation (p = 0.05, r = 0.77) between MHCI MFI and TNCC after naïve injection and a trend (p = 0.16, r = 0.49) of a positive association of MHCI MFI to TNCC after primed injection. Within the FBS group only, there was a positive correlation (p = 0.04, r = 1) between TNCC and lymphocyte proliferation after both injections. Conclusions The trend of a negative correlation of TLD score and TNCC in the ALLO, but not the FBS group, together with the association of MHCI expression and TNCC in the ALLO group, indicates that improved stemness is associated with reduced MSC immunogenicity. When inflammation was incited by xenogen, there was a strong correlation of lymphocyte activation in vitro to adverse response in vivo, confirming that MLRs in vitro reflect MSC immunomodulatory activity in vivo. The relationship of stemness in vitro, suppression of lymphocyte activation in vitro, MHCI expression in vitro, and clinical response in vivo should be further investigated

    Extraformational sediment recycling on Mars

    No full text

    The Hsp70/J-protein machinery of the African trypanosome, Trypanosoma brucei

    No full text
    corecore