464 research outputs found

    Some results of rocket experiments in the quiet d region

    Get PDF
    Electron density profiles for quiet day mid- latitude d region using nike-apache sounding rocket

    Space-borne measurements of mesospheric magnesium species ? a retrieval algorithm and preliminary profiles

    Get PDF
    International audienceWe present a joint retrieval as well as first results for mesospheric air density and mesospheric Magnesium species (Mg and Mg+) using limb data from the SCIAMACHY instrument on board the European ENVISAT satellite.considered. These species feature Metallic species like neutral Mg, ionized Mg+ and others (Fe, Si, Li, etc.) ablate from meteoric dust, enter the gas phase and occur at high altitudes (?70 km). Emissions from these species are clearly observed in the SCIAMACHY limb measurements. These emissions are used to retrieve total and thermospheric column densities as well as preliminary profiles of metallic species in the altitude range of 70?92 km. In this paper, neutral Magnesium as well as its ionized counterpart Mg+ is considered. These species feature resonance fluorescence in the wavelength range 279 and 285 nm and thus have a rather simple excitation process. A radiative transfer model (RTM) for the mesosphere has been developed and validated. Based on a ray tracing kernel, radiances in a large wavelength range from 240?300 nm covering limb as well as nadir geometry can be calculated. The forward model has been validated and shows good agreement with established models in the given wavelength range and a large altitude range. The RTM has been coupled to a retrieval based on Optimal Estimation. Air density is retrieved from Rayleigh backscattered light. Mesospheric Mg and Mg+ number densities are retrieved from their emission signals observed in the limb scans of SCIAMACHY. Other species like iron, silicon, OH and NO can be investigated in principle with the same algorithm. Based on the retrieval presented here, SCIAMACHY offers the opportunity to investigate mesospheric species on a global scale and with good vertical resolution for the first time

    An Algorithm for Constructing a k-Tree for a k-Connected Matroid

    Full text link

    Controlled Thermal Expansion Coat for Thermal Barrier Coatings

    Get PDF
    A improved thermal barrier coating and method for producing and applying such is disclosed herein. The thermal barrier coating includes a high temperature substrate, a first bond coat layer applied to the substrate of MCrAlX, and a second bond coat layer of MCrAlX with particles of a particulate dispersed throughout the MCrAlX and the preferred particulate is Al2O3. The particles of the particulate dispersed throughout the second bond coat layer preferably have a diameter of less then the height of the peaks of the second bond coat layer, or a diameter of less than 5 microns. The method of producing the second bond coat layer may either include the steps of mechanical alloying of particles throughout the second bond coat layer, attrition milling the particles of the particulate throughout the second bond coat layer, or using electrophoresis to disperse the particles throughout the second bond coat layer. In the preferred embodiment of the invention, the first bond coat layer is applied to the substrate, and then the second bond coat layer is thermally sprayed onto the first bond coat layer. Further, in a preferred embodiment of die invention, a ceramic insulating layer covers the second bond coat layer

    Ozone and alkyl nitrate formation from the Deepwater Horizon oil spill atmospheric emissions

    Get PDF
    Ozone (O3), alkyl nitrates (RONO2), and other photochemical products were formed in the atmosphere downwind from the Deepwater Horizon (DWH) oil spill by photochemical reactions of evaporating hydrocarbons with NOx (=NO+NO2) emissions from spill response activities. Reactive nitrogen species and volatile organic compounds (VOCs) were measured from an instrumented aircraft during daytime flights in the marine boundary layer downwind from the area of surfacing oil. A unique VOC mixture, where alkanes dominated the hydroxyl radical (OH) loss rate, was emitted into a clean marine environment, enabling a focused examination of O3 and RONO 2 formation processes. In the atmospheric plume from DWH, the OH loss rate, an indicator of potential O3 formation, was large and dominated by alkanes with between 5 and 10 carbons per molecule (C 5-C10). Observations showed that NOx was oxidized very rapidly with a 0.8h lifetime, producing primarily C6-C10 RONO2 that accounted for 78% of the reactive nitrogen enhancements in the atmospheric plume 2.5h downwind from DWH. Both observations and calculations of RONO2 and O3 production rates show that alkane oxidation dominated O3 formation chemistry in the plume. Rapid and nearly complete oxidation of NOx to RONO2 effectively terminated O3 production, with O3 formation yields of 6.0±0.5 ppbv O3 per ppbv of NOx oxidized. VOC mixing ratios were in large excess of NOx, and additional NOx would have formed additional O3 in this plume. Analysis of measurements of VOCs, O3, and reactive nitrogen species and calculations of O3 and RONO2 production rates demonstrate that NOx-VOC chemistry in the DWH plume is explained by known mechanisms. Copyright 2012 by the American Geophysical Union

    Degree-scale Cosmic Microwave Background Polarization Measurements from Three Years of BICEP1 Data

    Get PDF
    BICEP1 is a millimeter-wavelength telescope designed specifically to measure the inflationary B-mode polarization of the cosmic microwave background at degree angular scales. We present results from an analysis of the data acquired during three seasons of observations at the South Pole (2006-2008). This work extends the two-year result published in Chiang et al., with additional data from the third season and relaxed detector-selection criteria. This analysis also introduces a more comprehensive estimation of band power window functions, improved likelihood estimation methods, and a new technique for deprojecting monopole temperature-to-polarization leakage that reduces this class of systematic uncertainty to a negligible level. We present maps of temperature, E- and B-mode polarization, and their associated angular power spectra. The improvement in the map noise level and polarization spectra error bars are consistent with the 52% increase in integration time relative to Chiang et al. We confirm both self-consistency of the polarization data and consistency with the two-year results. We measure the angular power spectra at 21 ≤ ℓ ≤ 335 and find that the EE spectrum is consistent with Lambda cold dark matter cosmology, with the first acoustic peak of the EE spectrum now detected at 15σ. The BB spectrum remains consistent with zero. From B-modes only, we constrain the tensor-to-scalar ratio to r = 0.03^(+0.27)_(-0.23), or r < 0.70 at 95% confidence level

    The Warm Molecular Gas Around the Cloverleaf Quasar

    Get PDF
    We present the first broadband lambda = 1 mm spectrum toward the z=2.56 Cloverleaf Quasar, obtained with Z-Spec, a 1-mm grating spectrograph on the 10.4-meter Caltech Submillimeter Observatory. The 190-305 GHz observation band corresponds to rest-frame 272 to 444 microns, and we measure the dust continuum as well as all four transitions of carbon monoxide (CO) lying in this range. The power-law dust emission, F_nu = 14 mJy (nu/240GHz)^3.9 is consistent with the published continuum measurements. The CO J=6->5, J=8->7, and J=9->8 measurements are the first, and now provide the highest-J CO information in this source. Our measured CO intensities are very close to the previously-published interferometric measurements of J=7->6, and we use all available transitions and our 13CO upper limits to constrain the physical conditions in the Cloverleaf molecular gas disk. We find a large mass (2-50x10^9 Msun) of highly-excited gas with thermal pressure nT > 10^6 Kcm^-3. The ratio of the total CO cooling to the far-IR dust emission exceeds that in the local dusty galaxies, and we investigate the potential heating sources for this bulk of warm molecular gas. We conclude that both UV photons and X-rays likely contribute, and discuss implications for a top-heavy stellar initial mass function arising in the X-ray-irradiated starburst. Finally we present tentative identifications of other species in the spectrum, including a possible detection of the H20 2_0,2->1_1,1 transition at lambda_rest = 303 microns.Comment: ApJ in press, 12 pages in emulateAp
    corecore