Abstract

We present the first broadband lambda = 1 mm spectrum toward the z=2.56 Cloverleaf Quasar, obtained with Z-Spec, a 1-mm grating spectrograph on the 10.4-meter Caltech Submillimeter Observatory. The 190-305 GHz observation band corresponds to rest-frame 272 to 444 microns, and we measure the dust continuum as well as all four transitions of carbon monoxide (CO) lying in this range. The power-law dust emission, F_nu = 14 mJy (nu/240GHz)^3.9 is consistent with the published continuum measurements. The CO J=6->5, J=8->7, and J=9->8 measurements are the first, and now provide the highest-J CO information in this source. Our measured CO intensities are very close to the previously-published interferometric measurements of J=7->6, and we use all available transitions and our 13CO upper limits to constrain the physical conditions in the Cloverleaf molecular gas disk. We find a large mass (2-50x10^9 Msun) of highly-excited gas with thermal pressure nT > 10^6 Kcm^-3. The ratio of the total CO cooling to the far-IR dust emission exceeds that in the local dusty galaxies, and we investigate the potential heating sources for this bulk of warm molecular gas. We conclude that both UV photons and X-rays likely contribute, and discuss implications for a top-heavy stellar initial mass function arising in the X-ray-irradiated starburst. Finally we present tentative identifications of other species in the spectrum, including a possible detection of the H20 2_0,2->1_1,1 transition at lambda_rest = 303 microns.Comment: ApJ in press, 12 pages in emulateAp

    Similar works

    Available Versions

    Last time updated on 16/02/2019