1,681 research outputs found

    Warm Molecular Layers in Protoplanetary Disks

    Get PDF
    We have investigated molecular distributions in protoplanetary disks, adopting a disk model with a temperature gradient in the vertical direction. The model produces sufficiently high abundances of gaseous CO and HCO+ to account for line observations of T Tauri stars using a sticking probability of unity and without assuming any non-thermal desorption. In regions of radius R > 10 AU, with which we are concerned, the temperature increases with increasing height from the midplane. In a warm intermediate layer, there are significant amounts of gaseous molecules owing to thermal desorption and efficient shielding of ultraviolet radiation by the flared disk. The column densities of HCN, CN, CS, H2CO, HNC and HCO+ obtained from our model are in good agreement with the observations of DM Tau, but are smaller than those of LkCa15. Molecular line profiles from our disk models are calculated using a 2-dimensional non-local-thermal-equilibrium (NLTE) molecular-line radiative transfer code for a direct comparison with observations. Deuterated species are included in our chemical model. The molecular D/H ratios in the model are in reasonable agreement with those observed in protoplanetary disks.Comment: 11 pages, Latex (aa.cls), to be published in Astronomy and Astrophysic

    Two-dimensional Distributions and Column Densities of Gaseous Molecules in Protoplanetary Disks II

    Get PDF
    We have investigated the two-dimensional (R,Z) distribution of deuterated molecular species in circumstellar disks around young stellar objects. The abundance ratios between singly deuterated and normal molecules (``D/H ratios'') in disks evolve in a similar way as in molecular clouds. Fractionation is caused by rapid exchange reactions that are exothermic because of energy differences between deuterated and normal species. In the midplane region, where molecules are heavily depleted onto grain surfaces, the D/H ratios of gaseous molecules are higher than at larger heights. The D/H ratios for the vertical column densities of NH3, H2O, and HCO+ are sensitive to the temperature, and decrease significantly with decreasing radial distance for R < 300 AU. The analogous D/H ratios for CH4 and H2CO, on the other hand, are not very sensitive to the temperature in the range (T=10-50 K) we are concerned with, and do not decrease with decreasing R at R > 50 AU. The D/H column-density ratios also depend on disk mass. In a disk with a larger mass, the ratios of deuterated species to normal species are higher, because of heavier depletion of molecules onto grains. In the second part of the paper, we report molecular column densities for disks embedded in ambient cloud gas. Our results suggest that CN and HCO+ can be tracers of gaseous disks, especially if the central object is a strong X-ray source. Our results also suggest that the radial distributions of CN, C2H, HCN, and H2CO may vary among disks depending on the X-ray luminosity of the central star.Comment: 13 page

    Modeling Molecular-Line Emission from Circumstellar Disks

    Full text link
    Molecular lines hold valuable information on the physical and chemical composition of disks around young stars, the likely progenitors of planetary systems. This invited contribution discusses techniques to calculate the molecular emission (and absorption) line spectrum based on models for the physical and chemical structure of protoplanetary disks. Four examples of recent research illutrate these techniques in practice: matching resolved molecular-line emission from the disk around LkCa15 with theoertical models for the chemistry; evaluating the two-dimensional transfer of ultraviolet radiation into the disk, and the effect on the HCN/CN ratio; far-infrared CO line emission from a superheated disk surface layer; and inward motions in the disk around L1489 IRS.Comment: 6 pages, no figures. To appear in "The Dense Interstellar Medium in Galaxies", Procs. Fourth Cologne-Bonn-Zermatt-Symposiu

    Narrow-line magneto-optical trap for erbium

    Full text link
    We report on the experimental realization of a robust and efficient magneto-optical trap for erbium atoms, based on a narrow cooling transition at 583nm. We observe up to N=2×108N=2 \times 10^{8} atoms at a temperature of about T=15ÎŒKT=15 \mu K. This simple scheme provides better starting conditions for direct loading of dipole traps as compared to approaches based on the strong cooling transition alone, or on a combination of a strong and a narrow kHz transition. Our results on Er point to a general, simple and efficient approach to laser cool samples of other lanthanide atoms (Ho, Dy, and Tm) for the production of quantum-degenerate samples

    A Constraint on the Amount of Hydrogen from the CO Chemistry in Debris Disks

    Full text link
    The faint CO gases in debris disks are easily dissolved into C by UV irradiation, while CO can be reformed via reactions with hydrogen. The abundance ratio of C/CO could thus be a probe of the amount of hydrogen in the debris disks. We conduct radiative transfer calculations with chemical reactions for debris disks. For a typical dust-to-gas mass ratio of debris disks, CO formation proceeds without the involvement of H2_2 because a small amount of dust grains makes H2_2 formation inefficient. We find that the CO to C number density ratio depends on a combination of nHZ0.4χ−1.1n_\mathrm{H}Z^{0.4}\chi^{-1.1}, where nHn_\mathrm{H} is the hydrogen nucleus number density, ZZ is the metallicity, and χ\chi is the FUV flux normalized by the Habing flux. Using an analytic formula for the CO number density, we give constraints on the amount of hydrogen and metallicity for debris disks. CO formation is accelerated by excited H2_2 either when the dust-to-gas mass ratio is increased or the energy barrier of chemisorption of hydrogen on the dust surface is decreased. This acceleration of CO formation occurs only when the shielding effects of CO are insignificant. In shielded regions, the CO fractions are almost independent of the parameters of dust grains.Comment: 29pages, 13figures, accepted for Ap

    Elevated lipoprotein(a) as a predictor for coronary events in older men

    Get PDF
    Elevated circulating lipoprotein (a) [Lp(a)] is associated with an increased risk of first and recurrent cardiovascular events; however, the effect of baseline Lp(a) levels on long-term outcomes in an elderly population is not well understood. The current single-center prospective study evaluated the association of Lp(a) levels with incident acute coronary syndrome to identify populations at risk of future events. Lp(a) concentration was assessed in 755 individuals (mean age of 71.9 years) within the community and followed for up to 8 years (median time to event, 4.5 years; interquartile range, 2.5–6.5 years). Participants with clinically relevant high levels of Lp(a) (>50 mg/dl) had an increased absolute incidence rate of ASC of 2.00 (95% CI, 1.0041) over 8 years (P = 0.04). Moreover, Kaplan-Meier cumulative event analyses demonstrated the risk of ASC increased when compared with patients with low (<30 mg/dl) and elevated (30–50 mg/dl) levels of Lp(a) over 8 years (Gray’s test; P = 0.16). Within analyses adjusted for age and BMI, the hazard ratio was 2.04 (95% CI, 1.0–4.2; P = 0.05) in the high versus low Lp(a) groups. Overall, this study adds support for recent guidelines recommending a one-time measurement of Lp(a) levels in cardiovascular risk assessment to identify subpopulations at risk and underscores the potential utility of this marker even among older individuals at a time when potent Lp(a)-lowering agents are undergoing evaluation for clinical use

    Efficient production of polar molecular Bose-Einstein condensates via an all-optical R-type atom-molecule adiabatic passage

    Full text link
    We propose a scheme of "RR-type" photoassociative adiabatic passage (PAP) to create polar molecular condensates from two different species of ultracold atoms. Due to the presence of a quasi-coherent population trapping state in the scheme, it is possible to associate atoms into molecules with a \textit{low-power} photoassociation (PA) laser. One remarkable advantage of our scheme is that a tunable atom-molecule coupling strength can be achieved by using a time-dependent PA field, which exhibits larger flexibility than using a tunable magnetic field. In addition, our results show that the PA intensity required in the "RR-type" PAP could be greatly reduced compared to that in a conventional "Λ\Lambda -type" one.Comment: 17 pages, 5 figures, to appear in New Journal of Physic

    NH_3(1_0-0_0) in the pre-stellar core L1544

    Get PDF
    Pre-stellar cores represent the initial conditions in the process of star and planet formation, therefore it is important to study their physical and chemical structure. Because of their volatility, nitrogen-bearing molecules are key to study the dense and cold gas present in pre-stellar cores. The NH_3 rotational transition detected with Herschel-HIFI provides a unique combination of sensitivity and spectral resolution to further investigate physical and chemical processes in pre-stellar cores. Here we present the velocity-resolved Herschel-HIFI observations of the ortho-NH_3(1_0-0_0) line at 572 GHz and study the abundance profile of ammonia across the pre-stellar core L1544 to test current theories of its physical and chemical structure. Recently calculated collisional coefficients have been included in our non-LTE radiative transfer code to reproduce Herschel observations. A gas-grain chemical model, including spin-state chemistry and applied to the (static) physical structure of L1544 is also used to infer the abundance profile of ortho-NH_3 . The hyperfine structure of ortho-NH_3(1_0-0_0) is resolved for the first time in space. All the hyperfine components are strongly self-absorbed. The profile can be reproduced if the core is contracting in quasi-equilibrium, consistent with previous work, and if the NH_3 abundance is slightly rising toward the core centre, as deduced from previous interferometric observations of para-NH_3(1,1). The chemical model overestimates the NH_3 abundance at radii between ~ 4000 and 15000 AU by about two orders of magnitude and underestimates the abundance toward the core centre by more than one order of magnitude. Our observations show that chemical models applied to static clouds have problems in reproducing NH_3 observations.Comment: accepted for publication in A&A Letter
    • 

    corecore