103 research outputs found

    Globalization and land-use transitions in Latin America

    Get PDF
    Current socioeconomic drivers of land-use change associated with globalization are producing two contrasting land-use trends in Latin America. Increasing global food demand (particularly in Southeast Asia) accelerates deforestation in areas suitable for modern agriculture (e.g., soybean), severely threatening ecosystems, such as Amazonian rain forests, dry forests, and subtropical grasslands. Additionally, in the coming decades, demand for biofuels may become an emerging threat. In contrast, high yields in modern agricultural systems and rural–urban migration coupled with remittances promote the abandonment of marginal agricultural lands, thus favoring ecosystem recovery on mountains, deserts, and areas of poor soils, while improving human well-being. The potential switch from production in traditional extensive grazing areas to intensive modern agriculture provides opportunities to significantly increase food production while sparing land for nature conservation. This combination of emerging threats and opportunities requires changes in the way the conservation of Latin American ecosystems is approached. Land-use efficiency should be analyzed beyond the local-based paradigm that drives most conservation programs, and focus on large geographic scales involving long-distance fluxes of products, information, and people in order to maximize both agricultural production and the conservation of environmental services.Fil: Grau, Hector Ricardo. Universidad Nacional de Tucumán. Facultad de Ciencias Naturales e Instituto Miguel Lillo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; ArgentinaFil: Mitchell, Aide. Universidad de Puerto Rico; Puerto Ric

    Red coloration of tropical young leaves: a possible antifungal defense?

    Get PDF
    Journal ArticleMany woody species in humid tropical forests synchronously flush entire canopies of young red leaves. Numerous unsuccessful attempts have been made to explain the adaptive value of this visually striking phenomenon. In the humid tropics, fungal attack is a potentially important source of mortality for expanding young leaves. We propose that the anthocyanins responsible for the red coloration of young leaves may play a protective role against invasions by leaf-attacking fungal pathogens

    Asymmetric forest transition driven by the interaction of socioeconomic development and environmental heterogeneity in Central America

    Get PDF
    Forest transitions (FT) have been observed in many developed countries and more recently in the developing world. However, our knowledge of FT from tropical regions is mostly derived from case studies from within a particular country, making it difficult to generalize findings across larger regions. Here we overcome these difficulties by conducting a recent (2001-2010) satellite-based analysis of trends in forest cover across Central America, stratified by biomes, which we related to socioeconomic variables associated with human development. Results show a net decrease of woody vegetation resulting from 12,201 km2 of deforestation of moist forests and 6,825 km2 of regrowth of conifer and dry forests. The Human Development Index was the socioeconomic variable best associated with forest cover change. The least-developed countries, Nicaragua and Guatemala, experienced both rapid deforestation of moist forests and significant recovery of conifer and dry forests. In contrast, the most developed countries, Panama and Costa Rica, had net woody vegetation gain and amore stable forest cover configuration. These results imply a good agreement with FT predictions of forest change in relation to socioeconomic development, but strong asymmetry in rates and directions of change largely dependent upon the biomewhere change is occurring. The FT model should be refined by incorporating ecological and socioeconomic heterogeneity, particularly inmulticountry and regional studies. These asymmetric patterns of forest change should be evaluatedwhen developing strategies for conserving biodiversity and environmental services.Fil: Redo, Daniel J.. Universidad de Puerto Rico; Puerto RicoFil: Grau, Hector Ricardo. Universidad Nacional de Tucumán; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Aide, T. Mitchell. Universidad de Puerto Rico; Puerto RicoFil: Clark, Matthew L.. Sonoma State University; Estados Unido

    Reversals of Reforestation Across Latin America Limit Climate Mitigation Potential of Tropical Forests

    Get PDF
    Carbon sequestration through tropical reforestation and natural regeneration could make an important contribution to climate change mitigation, given that forest cover in many tropical regions increased during the early part of the 21st century. The size of this carbon sink will depend on the degree to which second-growth forests are permanent and protected from re-clearing. Yet few studies have assessed permanence of reforestation, especially not at a large spatial scale. Here, we analyzed a 14-year time series (2001–2014) of remotely sensed land-cover data, covering all tropical Latin America and the Caribbean, to quantify the extent of second-growth forest permanence. Our results show that in many cases, reforestation in Latin America and the Caribbean during the early 21st century reversed by 2014, limiting carbon sequestration. In fact, reversals of reforestation, in which some or all gains in forest cover in the early 2000s were subsequently lost, were ten times more common than sustained increases in forest cover. Had reversals of reforestation been avoided, forests could have sequestered 0.58 Pg C, over four times more carbon than we estimate was sequestered after accounting for impermanence (0.14 Pg), representing a loss of 75% of carbon sequestration potential. Differences in the prevalence of reforestation reversals across countries suggest an important role for socio-economic, political, and ecological context, with political transitions and instability increasing the likelihood of reversals. These findings suggest that national commitments to reforestation may fall short of their carbon sequestration goals without provisions to ensure long-term permanence of new forests.Fil: Schwartz, Naomi B.. University of British Columbia; CanadáFil: Aide, T. Mitchell. Universidad de Puerto Rico; Puerto RicoFil: Graesser, Jordan. University of Queensland; AustraliaFil: Grau, Hector Ricardo. Universidad Nacional de Tucumán. Instituto de Ecología Regional. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Ecología Regional; ArgentinaFil: Uriarte, María. Columbia University; Estados Unido

    Biodiversity recovery of Neotropical secondary forests

    Get PDF
    Old-growth tropical forests harbor an immense diversity of tree species but are rapidly being cleared, while secondary forests that regrow on abandoned agricultural lands increase in extent. We assess how tree species richness and composition recover during secondary succession across gradients in environmental conditions and anthropogenic disturbance in an unprecedented multisite analysis for the Neotropics. Secondary forests recover remarkably fast in species richness but slowly in species composition. Secondary forests take a median time of ve decades to recover the species richness of old-growth forest (80% recovery after 20 years) based on rarefaction analysis. Full recovery of species composition takes centuries (only 34% recovery after 20 years). A dual strategy that maintains both oldgrowth forests and species-rich secondary forests is therefore crucial for biodiversity conservation in human-modied tropical landscapes

    Land Change in the Greater Antilles between 2001 and 2010

    Get PDF
    Land change in the Greater Antilles differs markedly among countries because of varying socioeconomic histories and global influences. We assessed land change between 2001 and 2010 in municipalities (second administrative units) of Cuba, Dominican Republic, Haiti, Jamaica, and Puerto Rico. Our analysis used annual land-use/land-cover maps derived from MODIS satellite imagery to model linear change in woody vegetation, mixed-woody/plantations and agriculture/herbaceous vegetation. Using this approach, we focused on municipalities with significant change (p ≤ 0.05). Between 2001 and 2010, the Greater Antilles gained 801 km2 of woody vegetation. This increase was mainly due to the return of woody vegetation in Cuba, and smaller increases in Puerto Rico and the Dominican Republic. Despite relatively similar environments, the factors associated with these changes varied greatly between countries. In Puerto Rico, Dominican Republic, and Jamaica, agriculture declined while mixed-woody vegetation increased, mostly in montane regions. In contrast, Cuba experienced an extensive decline in sugarcane plantations, which resulted in the spread of an invasive woody shrub species and the increase in woody vegetation in areas of high agricultural value. In Haiti, the growing population, fuelwood consumption, and increase in agriculture contributed to woody vegetation loss; however, woody vegetation loss was accompanied with a significant increase in the mixed woody and plantations class. Most regional analyses often treated the Greater Antilles as a homogeneous unit; our results suggest that historical and socio-economic differences among countries are crucial for understanding the variation in present day land change dynamics.Fil: Alvarez Berrios, Nora L.. Universidad de Puerto Rico; Puerto RicoFil: Redo, Daniel J.. Universidad de Puerto Rico; Puerto RicoFil: Aide, T. Mitchell. Universidad de Puerto Rico; Puerto RicoFil: Clark, Matthew L.. Sonoma State University; Estados UnidosFil: Grau, Hector Ricardo. Universidad Nacional de Tucumán. Facultad de Ciencias Naturales e Instituto Miguel Lillo. Instituto de Ecología Regional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Mapping and characterizing social-ecological land systems of South America

    Get PDF
    Humans place strong pressure on land and have modified around 75% of Earth’s terrestrial surface. In this context, ecoregions and biomes, merely defined on the basis of their biophysical features, are incomplete characterizations of the territory. Land system science requires classification schemes that incorporate both social and biophysical dimensions. In this study, we generated spatially explicit social-ecological land system (SELS) typologies for South America with a hybrid methodology that combined data-driven spatial analysis with a knowledge-based evaluation by an interdisciplinary group of regional specialists. Our approach embraced a holistic consideration of the social-ecological land systems, gathering a dataset of 26 variables spanning across 7 dimensions: physical, biological, land cover, economic, demographic, political, and cultural. We identified 13 SELS nested in 5 larger social-ecological regions (SER). Each SELS was discussed and described by specific groups of specialists. Although 4 environmental and 1 socioeconomic variable explained most of the distribution of the coarse SER classification, a diversity of 15 other variables were shown to be essential for defining several SELS, highlighting specific features that differentiate them. The SELS spatial classification presented is a systematic and operative characterization of South American social-ecological land systems. We propose its use can contribute as a reference framework for a wide range of applications such as analyzing observations within larger contexts, designing system-specific solutions for sustainable development, and structuring hypothesis testing and comparisons across space. Similar efforts could be done elsewhere in the world

    It\u27s Time to Listen: There is Much to be Learned from the Sounds of Tropical Ecosystems

    Get PDF
    Knowledge that can be gained from acoustic data collection in tropical ecosystems is low‐hanging fruit. There is every reason to record and with every day, there are fewer excuses not to do it. In recent years, the cost of acoustic recorders has decreased substantially (some can be purchased for under US$50, e.g., Hill et al. 2018) and the technology needed to store and analyze acoustic data is continuously improving (e.g., Corrada Bravo et al. 2017, Xie et al. 2017). Soundscape recordings provide a permanent record of a site at a given time and contain a wealth of invaluable and irreplaceable information. Although challenges remain, failure to collect acoustic data now in tropical ecosystems would represent a failure to future generations of tropical researchers and the citizens that benefit from ecological research. In this commentary, we (1) argue for the need to increase acoustic monitoring in tropical systems; (2) describe the types of research questions and conservation issues that can be addressed with passive acoustic monitoring (PAM) using both short‐ and long‐term data in terrestrial and freshwater habitats; and (3) present an initial plan for establishing a global repository of tropical recordings

    Legume abundance along successional and rainfall gradients in Neotropical forests

    Get PDF
    The nutrient demands of regrowing tropical forests are partly satisfied by nitrogen-fixing legume trees, but our understanding of the abundance of those species is biased towards wet tropical regions. Here we show how the abundance of Leguminosae is affected by both recovery from disturbance and large-scale rainfall gradients through a synthesis of forest inventory plots from a network of 42 Neotropical forest chronosequences. During the first three decades of natural forest regeneration, legume basal area is twice as high in dry compared with wet secondary forests. The tremendous ecological success of legumes in recently disturbed, water-limited forests is likely to be related to both their reduced leaflet size and ability to fix N2, which together enhance legume drought tolerance and water-use efficiency. Earth system models should incorporate these large-scale successional and climatic patterns of legume dominance to provide more accurate estimates of the maximum potential for natural nitrogen fixation across tropical forests.Additional co-authors: Rebecca J. Cole, Gabriel Dalla Colletta, Ben de Jong, Julie S. Denslow, Saara J. DeWalt, Juan Manuel Dupuy, Sandra M. Durán, Mário Marcos do Espírito Santo, G. Wilson Fernandes, Yule Roberta Ferreira Nunes, Bryan Finegan, Vanessa Granda Moser, Jefferson S. Hall, José Luis Hernández-Stefanoni, André B. Junqueira, Deborah Kennard, Edwin Lebrija-Trejos, Susan G. Letcher, Madelon Lohbeck, Erika Marín-Spiotta, Miguel Martínez-Ramos, Jorge A. Meave, Duncan N. L. Menge, Francisco Mora, Rodrigo Muñoz, Robert Muscarella, Susana Ochoa-Gaona, Edith Orihuela-Belmonte, Rebecca Ostertag, Marielos Peña-Claros, Eduardo A. Pérez-García, Daniel Piotto, Peter B. Reich, Casandra Reyes-García, Jorge Rodríguez-Velázquez, I. Eunice Romero-Pérez, Lucía Sanaphre-Villanueva, Arturo Sanchez-Azofeifa, Naomi B. Schwartz, Arlete Silva de Almeida, Jarcilene S. Almeida-Cortez, Whendee Silver, Vanessa de Souza Moreno, Benjamin W. Sullivan, Nathan G. Swenson, Maria Uriarte, Michiel van Breugel, Hans van der Wal, Maria das Dores Magalhães Veloso, Hans F. M. Vester, Ima Célia Guimarães Vieira, Jess K. Zimmerman & Jennifer S. Power
    corecore