92 research outputs found

    The ubiquitin-like modifier FAT10 inhibits retinal PDE6 activity and mediates its proteasomal degradation

    Get PDF
    The retina-specific chaperone aryl hydrocarbon interacting protein-like 1 (AIPL1) is essential for the correct assembly of phosphodiesterase 6 (PDE6), which is a pivotal effector enzyme for phototransduction and vision because it hydrolyzes cGMP. AIPL1 interacts with the cytokine-inducible ubiquitin-like modifier FAT10, which gets covalently conjugated to hundreds of proteins and targets its conjugation substrates for proteasomal degradation, but whether FAT10 affects PDE6 function or turnover is unknown. Here, we show that FAT10 mRNA is expressed in human retina and identify rod PDE6 as a retina-specific substrate of FAT10 conjugation. We found that AIPL1 stabilizes the FAT10 monomer and the PDE6-FAT10 conjugate. Additionally, we elucidated the functional consequences of PDE6 FAT10ylation. On the one hand, we demonstrate that FAT10 targets PDE6 for proteasomal degradation by formation of a covalent isopeptide linkage. On the other hand, FAT10 inhibits PDE6 cGMP hydrolyzing activity by noncovalently interacting with the PDE6 GAFa and catalytic domains. Therefore, FAT10 may contribute to loss of PDE6 and, as a consequence, degeneration of retinal cells in eye diseases linked to inflammation and inherited blindness-causing mutations in AIPL1

    TEAMwISE: synchronised immersive environments for exploration and analysis of animal behaviour

    Get PDF
    The recent availability of affordable and lightweight tracking sensors allows researchers to collect large and complex movement data sets. To explore and analyse these data, applications are required that are capable of handling the data while providing an environment that enables the analyst(s) to focus on the task of investigating the movement in the context of the geographic environment it occurred in. We present an extensible, open-source framework for collaborative analysis of geospatial–temporal movement data with a use case in collective behaviour analysis. The framework TEAMwISE supports the concurrent usage of several program instances, allowing to have different perspectives on the same data in collocated or remote set-ups. The implementation can be deployed in a variety of immersive environments, for example, on a tiled display wall and mobile VR devices

    Calmodulin interacts with angiotensin-converting enzyme-2 (ACE2) and inhibits shedding of its ectodomain

    Get PDF
    AbstractAngiotensin-converting enzyme-2 (ACE2) is a regulatory protein of the renin–angiotensin system (RAS) and a receptor for the causative agent of severe-acute respiratory syndrome (SARS), the SARS-coronavirus. We have previously shown that ACE2 can be shed from the cell surface in response to phorbol esters by a process involving TNF-α converting enzyme (TACE; ADAM17). In this study, we demonstrate that inhibitors of calmodulin also stimulate shedding of the ACE2 ectodomain, a process at least partially mediated by a metalloproteinase. We also show that calmodulin associates with ACE2 and that this interaction is decreased by calmodulin inhibitors

    The integrity and organization of the human AIPL1 functional domains is critical for its role as a HSP90-dependent co-chaperone for rod PDE6

    Get PDF
    Biallelic mutations in the photoreceptor-expressed aryl hydrocarbon receptor interacting protein-like 1 (AIPL1) are associated with autosomal recessive Leber congenital amaurosis (LCA), the most severe form of inherited retinopathy in early childhood. AIPL1 functions as a photoreceptor-specific co-chaperone that interacts with the molecular chaperone HSP90 to facilitate the stable assembly of the retinal cyclic GMP (cGMP) phosphodiesterase (PDE6) holoenzyme. In this study, we characterized the functional deficits of AIPL1 variations, some of which induce aberrant pre-mRNA AIPL1 splicing leading to the production of alternative AIPL1 isoforms. We investigated the ability of the AIPL1 variants to mediate an interaction with HSP90 and modulate the rod cGMP PDE6 stability and activity. Our data revealed that both the FK506 binding protein (FKBP)-like domain and the tetratricopeptide repeat (TPR) domain of AIPL1 are required for interaction with HSP90. We further demonstrate that AIPL1 significantly modulates the catalytic activity of heterologously expressed rod PDE6. Although the N-terminal FKBP-like domain of AIPL1 binds the farnesylated PDE6α subunit through direct interaction with the farnesyl moiety, mutations compromising the integrity of the C-terminal TPR domain of AIPL1 also failed to modulate PDE6 activity efficiently. These AIPL1 variants moreover failed to promote the HSP90-dependent stabilization of the PDE6α subunit in the cytosol. In summary, we have successfully validated the disease-causing status of the AIPL1 variations in vitro. Our findings provide insight into the mechanism underlying the co-chaperone role of AIPL1 and will be critical for ensuring an early and effective diagnosis of AIPL1 LCA patients

    The FAT10- and ubiquitin-dependent degradation machineries exhibit common and distinct requirements for MHC class I antigen presentation

    Get PDF
    Like ubiquitin (Ub), the ubiquitin-like protein FAT10 can serve as a signal for proteasome-dependent protein degradation. Here, we investigated the contribution of FAT10 substrate modification to MHC class I antigen presentation. We show that N-terminal modification of the human cytomegalovirus-derived pp65 antigen to FAT10 facilitates direct presentation and dendritic cell-mediated cross-presentation of the HLA-A2 restricted pp65495–503 epitope. Interestingly, our data indicate that the pp65 presentation initiated by either FAT10 or Ub partially relied on the 19S proteasome subunit Rpn10 (S5a). However, FAT10 distinguished itself from Ub in that it promoted a pp65 response which was not influenced by immunoproteasomes or PA28. Further divergence occurred at the level of Ub-binding proteins with NUB1 supporting the pp65 presentation arising from FAT10, while it exerted no effect on that initiated by Ub. Collectively, our data establish FAT10 modification as a distinct and alternative signal for facilitated MHC class I antigen presentation

    The integrity and organization of the human AIPL1 functional domains is critical for its role as a HSP90-dependent co-chaperone for rod PDE6

    Get PDF
    Biallelic mutations in the photoreceptor-expressed aryl hydrocarbon receptor interacting protein-like 1 (AIPL1) are associated with autosomal recessive Leber congenital amaurosis (LCA), the most severe form of inherited retinopathy in early childhood. AIPL1 functions as a photoreceptor-specific co-chaperone that interacts with the molecular chaperone HSP90 to facilitate the stable assembly of the retinal cyclic GMP (cGMP) phosphodiesterase (PDE6) holoenzyme. In this study, we characterized the functional deficits of AIPL1 variations, some of which induce aberrant pre-mRNA AIPL1 splicing leading to the production of al- ternative AIPL1 isoforms. We investigated the ability of the AIPL1 variants to mediate an interaction with HSP90 and modulate the rod cGMP PDE6 stability and activity. Our data revealed that both the FK506 binding protein (FKBP)-like domain and the tetra- tricopeptide repeat (TPR) domain of AIPL1 are required for interaction with HSP90. We further demonstrate that AIPL1 signifi- cantly modulates the catalytic activity of heterologously expressed rod PDE6. Although the N-terminal FKBP-like domain of AIPL1 binds the farnesylated PDE6a subunit through direct interaction with the farnesyl moiety, mutations compromising the integrity of the C-terminal TPR domain of AIPL1 also failed to modulate PDE6 activity efficiently. These AIPL1 variants moreover failed to promote the HSP90-dependent stabilization of the PDE6a subunit in the cytosol. In summary, we have successfully vali- dated the disease-causing status of the AIPL1 variations in vitro. Our findings provide insight into the mechanism underlying the co-chaperone role of AIPL1 and will be critical for ensuring an early and effective diagnosis of AIPL1 LCA patients

    The inherited blindness protein AIPL1 regulates the ubiquitin-like FAT10 pathway

    Get PDF
    Mutations in AIPL1 cause the inherited blindness Leber congenital amaurosis (LCA). AIPL1 has previously been shown to interact with NUB1, which facilitates the proteasomal degradation of proteins modified with the ubiquitin-like protein FAT10. Here we report that AIPL1 binds non-covalently to free FAT10 and FAT10ylated proteins and can form a ternary complex with FAT10 and NUB1. In addition, AIPL1 antagonised the NUB1-mediated degradation of the model FAT10 conjugate, FAT10-DHFR, and pathogenic mutations of AIPL1 were defective in inhibiting this degradation. While all AIPL1 mutants tested still bound FAT10-DHFR, there was a close correlation between the ability of the mutants to interact with NUB1 and their ability to prevent NUB1-mediated degradation. Interestingly, AIPL1 also co-immunoprecipitated the E1 activating enzyme for FAT10, UBA6, suggesting AIPL1 may have a role in directly regulating the FAT10 conjugation machinery. These studies are the first to implicate FAT10 in retinal cell biology and LCA pathogenesis, and reveal a new role of AIPL1 in regulating the FAT10 pathway

    Drug-target identification in COVID-19 disease mechanisms using computational systems biology approaches

    Get PDF
    Introduction: The COVID-19 Disease Map project is a large-scale community effort uniting 277 scientists from 130 Institutions around the globe. We use high-quality, mechanistic content describing SARS-CoV-2-host interactions and develop interoperable bioinformatic pipelines for novel target identification and drug repurposing. Methods: Extensive community work allowed an impressive step forward in building interfaces between Systems Biology tools and platforms. Our framework can link biomolecules from omics data analysis and computational modelling to dysregulated pathways in a cell-, tissue- or patient-specific manner. Drug repurposing using text mining and AI-assisted analysis identified potential drugs, chemicals and microRNAs that could target the identified key factors. Results: Results revealed drugs already tested for anti-COVID-19 efficacy, providing a mechanistic context for their mode of action, and drugs already in clinical trials for treating other diseases, never tested against COVID-19. Discussion: The key advance is that the proposed framework is versatile and expandable, offering a significant upgrade in the arsenal for virus-host interactions and other complex pathologies.Peer Reviewe

    Drug-target identification in COVID-19 disease mechanisms using computational systems biology approaches

    Get PDF
    IntroductionThe COVID-19 Disease Map project is a large-scale community effort uniting 277 scientists from 130 Institutions around the globe. We use high-quality, mechanistic content describing SARS-CoV-2-host interactions and develop interoperable bioinformatic pipelines for novel target identification and drug repurposing. MethodsExtensive community work allowed an impressive step forward in building interfaces between Systems Biology tools and platforms. Our framework can link biomolecules from omics data analysis and computational modelling to dysregulated pathways in a cell-, tissue- or patient-specific manner. Drug repurposing using text mining and AI-assisted analysis identified potential drugs, chemicals and microRNAs that could target the identified key factors.ResultsResults revealed drugs already tested for anti-COVID-19 efficacy, providing a mechanistic context for their mode of action, and drugs already in clinical trials for treating other diseases, never tested against COVID-19. DiscussionThe key advance is that the proposed framework is versatile and expandable, offering a significant upgrade in the arsenal for virus-host interactions and other complex pathologies

    Konzept zur Vermarktung von Schweinefleischpaketen von Schweinen aus Weidehaltung am Beispiel des Betriebs Sonnhof im Kreis Konstanz

    No full text
    In Deutschland werden zunehmend artgerechte Tierhaltungsverfahren gefordert. Außerdem stehen viele Betriebe vor dem Problem „Wachsen oder Weichen“ und suchen aus diesem Grund neue Betriebszweige um ihre Existenz zu sichern. Die Schweinemast im Freiland und die Direktvermarktung des so erzeugten Fleischs kann einen solchen Betriebszweig darstellen. Dieses Verfahren wird in dieser Arbeit anhand eines Untersuchungsbetriebs in Süddeutschland beschrieben und die Wirtschaftlichkeit berechnet. Die Freilandhaltung von Schweinen muss höhere rechtliche Anforderungen erfüllen als die konventionelle Schweinemast. Es gelten strenge Hygienebestimmungen und die Freilandhaltung muss vom zuständigen Veterinäramt genehmigt werden. Um Kosten und Arbeitszeit zu sparen ist die Planung und die Standortwahl der Schweineweide wichtig. Außerdem unterscheiden sich die anfallenden Arbeiten in der Freilandhaltung stark von denen der Stallhaltung. Die Vorteile der Freilandhaltung sind vor allem die niedrigen Investitionskosten, die bessere Tiergesundheit und die artgerechtere Haltung. Die Nachteile sind der Höhere Arbeitsaufwand und die schlechtere Mastleistung. Der Untersuchungsbetrieb „Sonnhof“ befindet sich im Süden Baden-Württembergs. Auf dem Betrieb wird Milchviehhaltung, Schweinemast im Freiland, Obstbau, ein Hofladen und eine Schnapsbrennerei betrieben. Das Fleisch der Schweine wird in gemischten Fleischpaketen zu einem Preis von 10,44 € pro kg direkt an den 39 Endkunden verkauft. Bei ausreichender Nachfrage in den ersten Jahren soll die Schweinemast in Zukunft ausgeweitet werden. Für die Kostenrechnung werden die variablen Kosten und die Fixkosten berechnet. Pro kg produziertem und verkauftem Fleisch fallen 4,21 € variable Kosten an, pro Jahr entstehen 442,38 € Fixkosten. Der Gewinn wird für einen Produktionsumfang von 20, 40 und 60 Schweine pro Jahr und jeweils für einen Verkaufspreis von 10,44 €, 12,44 €, und 14,44 € berechnet. Die Gewinnspanne reicht von 10.149 € für den kleinsten Produktionsumfang und den niedrigsten Preis bis zu 51.714 € beim größten Produktionsumfang und dem höchsten Preis. Die Schweinemast im Freiland und die damit verbundene Selbstvermarktung können auf dem Untersuchungsbetrieb mit sehr geringem Risiko betrieben werden, da die Investitionskosten sehr niedrig sind. Bereits bei einem kleinen Produktionsumfang und niedrigem Preis wird Gewinn erwirtschaftet. Der Erfolg des Betriebszweigs hängt vor allem von der ausreichenden Nachfrage und einer erfolgreichen Umsetzung der Freilandhaltung ab
    corecore