2,172 research outputs found

    HSV-tk/GCV gene therapy mediated by EBV-LMP1 for EBV-associated cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To investigate the feasibility of gene therapy in treating Epstein-Barr virus (EBV)-associated cancer by employing the suicide gene, herpes simplex virus thymidine kinase/ganciclovir (HSV-tk/GCV), which uses the signaling pathway through the HIV-long terminal repeat (LTR) gene which is expressed from a nuclear factor-κB (NF-κB)-binding motif-containing promoter that is regulated by EBV-latent membrane protein 1 (LMP1) via NF-κB.</p> <p>Methods</p> <p>First, we constructed the plasmid pVLTR-tk, which was regulated by EBV-LMP1 via NF-κB, and then investigated the cytotoxic effect of the pVLTR-tk/GCV on cancer cells, using MTT assays, clonogenic assays, flow cytometry, and animal experiments.</p> <p>Results</p> <p>The activation of TK was increased after transfection of the pVLTR-tk into the EBV-LMP1 positive cells. After GCV treatment, the clonogenicity and survival of the cells substantially declined, and a bystander effect was also observed. The LMP1 positive cells exhibited remarkable apoptosis following pVLTR-tk/GCV treatment, and the pVLTR-tk/GCV restrained tumor growth in vivo for EBV-LMP1 positive cancers.</p> <p>Conclusion</p> <p>The pVLTR-tk/GCV suicide gene system may be used as a new gene targeting strategy for EBV-associated cancer.</p

    Dynamic and static study of the fluid-structure interaction problem on elastic box plate

    Get PDF
    The influence of coupling to the fluid field is neglected in the classic fluid mechanics theory. United Lagrangian-Eulerian method is used to solve the fluid-structure interaction (FSI) problem of the nonviscous and incompressible fluid flow around an elastic box plate taking into account the influence of deformation of the elastic plate. In this approach, each material is described in its preferred reference frame. Fluid flows are given in Eulerian coordinates whereas the elastic body is treated in a Lagrangian framework. The coupling between the fluid and elastic body domains is kinematic and dynamic conditions at the body surface. The kinematic and dynamic conditions are given in Eulerian and Lagrangian coordinates. The dynamic equation of the elastic box plate is expressed combining the dynamic conditions at the interface. The knowledge of both dynamic and static deformations, static pressure and velocity distributions is given by using the Taylor expansions method. The effect of plate deformation is taken into account for the obtained solutions

    local fractional fourier series solutions for nonhomogeneous heat equations arising in fractal heat flow with local fractional derivative

    Get PDF
    The fractal heat flow within local fractional derivative is investigated. The nonhomogeneous heat equations arising in fractal heat flow are discussed. The local fractional Fourier series solutions for one-dimensional nonhomogeneous heat equations are obtained. The nondifferentiable series solutions are given to show the efficiency and implementation of the present method

    Chaotification of Quasi-Zero Stiffness System via Direct Time-delay Feedback Control

    Get PDF
    This paper presents a chaotification method based on direct time-delay feedback control for a quasi-zero-stiffness isolation system. An analytical function of time-delay feedback control is derived based on differential-geometry control theory. Furthermore, the feasibility and effectiveness of this method was verified by numerical simulations. Numerical simulations show that this method holds the favorable aspects including the advantage of using tiny control gain, the capability of chaotifying across a large range of parametric domain and the high feasibility of the control implement
    corecore