71 research outputs found
Discovery and Kinetic Profiling of 7-Aryl-1,2,4-triazolo[4,3-a]pyridines: Positive Allosteric Modulators of the Metabotropic Glutamate Receptor 2
We report the synthesis and biological evaluation of a series of 7-aryl-1,2,4-triazolo[4,3-c]pyridines with mGlu(2) positive allosteric modulator (PAM) activity and affinity. Besides traditional in vitro parameters of potency and affinity, kinetic parameters k(on), k(off) and residence time (RT) were determined. The PAMs showed various kinetic profiles; k(on) values ranged over 2 orders of magnitude, whereas RT values were within a 10-fold range. Association rate constant k(on) was linearly correlated to affinity. Evaluation of a short, medium, and long RT compound in a label-free assay indicated a correlation between RT and functional effect. The effects of long RT compound 9 on sleep-wake states indicated long RT was translated into sustained inhibition of rapid eye movement (REM) in vivo. These results show that affinity-only driven selection would have resulted in mGlu(2) PAMs with high values for k(on) but not necessarily optimized RT, which is key to predicting optimal efficacy in vivo
Narcolepsy patients have antibodies that stain distinct cell populations in rat brain and influence sleep patterns.
Narcolepsy is a chronic sleep disorder, likely with an autoimmune component. During 2009 and 2010, a link between A(H1N1)pdm09 Pandemrix vaccination and onset of narcolepsy was suggested in Scandinavia. In this study, we searched for autoantibodies related to narcolepsy using a neuroanatomical array: rat brain sections were processed for immunohistochemistry/double labeling using patient sera/cerebrospinal fluid as primary antibodies. Sera from 89 narcoleptic patients, 52 patients with other sleep-related disorders (OSRDs), and 137 healthy controls were examined. Three distinct patterns of immunoreactivity were of particular interest: pattern A, hypothalamic melanin-concentrating hormone and proopiomelanocortin but not hypocretin/orexin neurons; pattern B, GABAergic cortical interneurons; and pattern C, mainly globus pallidus neurons. Altogether, 24 of 89 (27%) narcoleptics exhibited pattern A or B or C. None of the patterns were exclusive for narcolepsy but were also detected in the OSRD group at significantly lower numbers. Also, some healthy controls exhibited these patterns. The antigen of pattern A autoantibodies was identified as the common C-terminal epitope of neuropeptide glutamic acid-isoleucine/alpha-melanocyte-stimulating hormone (NEI/alphaMSH) peptides. Passive transfer experiments on rat showed significant effects of pattern A human IgGs on rapid eye movement and slow-wave sleep time parameters in the inactive phase and EEG theta-power in the active phase. We suggest that NEI/alphaMSH autoantibodies may interfere with the fine regulation of sleep, contributing to the complex pathogenesis of narcolepsy and OSRDs. Also, patterns B and C are potentially interesting, because recent data suggest a relevance of those brain regions/neuron populations in the regulation of sleep/arousal
Recent Updates on the Melanin-Concentrating Hormone (MCH) and Its Receptor System: Lessons from MCH1R Antagonists
Melanin-concentrating hormone (MCH) is a 19-amino-acid cyclic peptide which was originally found to lighten skin color in fish that is highly conserved among many species. MCH interacts with two G-protein-coupled receptors, MCH1R and MCH2R, but only MCH1R is expressed in rodents. MCH is mainly synthesized in the lateral hypothalamus and zona incerta, while MCH1R is widely expressed throughout the brain. Thus, MCH signaling is implicated in the regulation of many physiological functions. The identification of MCH1R has led to the development of small-molecule MCH1R antagonists that can block MCH signaling. MCH1R antagonists are useful not only for their potential therapeutic value, but also for understanding the physiological functions of the endogenous MCH system. Here, we review the physiological functions of the MCH system which have been investigated using MCH1R antagonists such as food intake, anxiety, depression, reward, and sleep. This will help us understand the physiological functions of the MCH system and suggest some of the potential applications of MCH1R antagonists in human disorders
Nesfatin-1/NUCB2 as a Potential New Element of Sleep Regulation in Rats.
STUDY OBJECTIVES: Millions suffer from sleep disorders that often accompany severe illnesses such as major depression; a leading psychiatric disorder characterized by appetite and rapid eye movement sleep (REMS) abnormalities. Melanin-concentrating hormone (MCH) and nesfatin-1/NUCB2 (nesfatin) are strongly co - expressed in the hypothalamus and are involved both in food intake regulation and depression. Since MCH was recognized earlier as a hypnogenic factor, we analyzed the potential role of nesfatin on vigilance. DESIGN: We subjected rats to a 72 h-long REMS deprivation using the classic flower pot method, followed by a 3 h-long 'rebound sleep'. Nesfatin mRNA and protein expressions as well as neuronal activity (Fos) were measured by quantitative in situ hybridization technique, ELISA and immunohistochemistry, respectively, in 'deprived' and 'rebound' groups, relative to controls sacrificed at the same time. We also analyzed electroencephalogram of rats treated by intracerebroventricularly administered nesfatin-1, or saline. RESULTS: REMS deprivation downregulated the expression of nesfatin (mRNA and protein), however, enhanced REMS during 'rebound' reversed this to control levels. Additionally, increased transcriptional activity (Fos) was demonstrated in nesfatin neurons during 'rebound'. Centrally administered nesfatin-1 at light on reduced REMS and intermediate stage of sleep, while increased passive wake for several hours and also caused a short-term increase in light slow wave sleep. CONCLUSIONS: The data designate nesfatin as a potential new factor in sleep regulation, which fact can also be relevant in the better understanding of the role of nesfatin in the pathomechanism of depression
A Very Large Number of GABAergic Neurons Are Activated in the Tuberal Hypothalamus during Paradoxical (REM) Sleep Hypersomnia
We recently discovered, using Fos immunostaining, that the tuberal and mammillary hypothalamus contain a massive population of neurons specifically activated during paradoxical sleep (PS) hypersomnia. We further showed that some of the activated neurons of the tuberal hypothalamus express the melanin concentrating hormone (MCH) neuropeptide and that icv injection of MCH induces a strong increase in PS quantity. However, the chemical nature of the majority of the neurons activated during PS had not been characterized. To determine whether these neurons are GABAergic, we combined in situ hybridization of GAD67 mRNA with immunohistochemical detection of Fos in control, PS deprived and PS hypersomniac rats. We found that 74% of the very large population of Fos-labeled neurons located in the tuberal hypothalamus after PS hypersomnia were GAD-positive. We further demonstrated combining MCH immunohistochemistry and GAD67 in situ hybridization that 85% of the MCH neurons were also GAD-positive. Finally, based on the number of Fos-ir/GAD+, Fos-ir/MCH+, and GAD+/MCH+ double-labeled neurons counted from three sets of double-staining, we uncovered that around 80% of the large number of the Fos-ir/GAD+ neurons located in the tuberal hypothalamus after PS hypersomnia do not contain MCH. Based on these and previous results, we propose that the non-MCH Fos/GABAergic neuronal population could be involved in PS induction and maintenance while the Fos/MCH/GABAergic neurons could be involved in the homeostatic regulation of PS. Further investigations will be needed to corroborate this original hypothesis
Cholinergic Mechanisms of Target Oddball Stimuli Detection: The Late “P300-Like” Event-Related Potential in Rats
Event-related potentials (ERPs) and oscillations (EROs) provide powerful tools for studying the brain’s synaptic function underlying information processing. The P300 component of ERPs indexing attention and working memory shows abnormal amplitude and latency in neurological and psychiatric diseases that are sensitive to pharmacological agents. In the active auditory oddball discriminant paradigm, behavior and auditory-evoked potentials (AEPs) were simultaneously recorded in awake rats to investigate whether P300-like potentials generated in rats responding to rare target oddball tones are sensitive to subcutaneous modulation of the cholinergic tone by donepezil (1 mg/kg) and scopolamine (0.64 mg/kg). After operant training, rats consistently discriminate rare target auditory stimuli from frequent irrelevant nontarget auditory stimuli by a higher level of correct lever presses (i.e., accuracy) in target trials associated with a food reward. Donepezil attenuated the disruptive effect of scopolamine on the level of accuracy and premature responses in target trials. Larger P300-like peaks with early and late components were revealed in correct rare target stimuli trials as compared to frequent tones. Donepezil enhanced the peak amplitude of the P300-like component to target stimuli and evoked slow theta and gamma oscillations, whereas scopolamine altered the amplitude of the P300-like component and EROs to target stimuli. Pretreatment with donepezil attenuated effects of scopolamine on the peak amplitude of the P300-like component and on EROs. This study provides evidence that AEP P300-like responses can be elicited by rats engaged in attentive and memory processing of target stimuli and outline the relevance of the cholinergic system in stimulus discrimination processing. The findings highlight the sensitivity of this translational index for investigating brain circuits and/or novel pharmacological agents, which modulate cholinergic transmission associated with increased allocation of attentional resources
A comparison of doubly hierarchical supervised learning procedures for multiple class longitudinal data from EEG experiments
status: publishe
Early Electrophysiological Disintegration of Hippocampal Neural Networks in a Novel Locus Coeruleus Tau-Seeding Mouse Model of Alzheimer’s Disease
Alzheimer’s disease (AD) is a progressive, neurodegenerative disease characterized by loss of synapses and disrupted functional connectivity (FC) across different brain regions. Early in AD progression, tau pathology is found in the locus coeruleus (LC) prior to amyloid-induced exacerbation of clinical symptoms. Here, a tau-seeding model in which preformed synthetic tau fibrils (K18) were unilaterally injected into the LC of P301L mice, equipped with multichannel electrodes for recording EEG in frontal cortical and CA1-CA3 hippocampal areas, was used to longitudinally quantify over 20 weeks of functional network dynamics in (1) power spectra; (2) FC using intra- and intersite phase-amplitude theta-gamma coupling (PAC); (3) coherence, partial coherence, and global coherent network efficiency (Eglob) estimates; and (4) the directionality of functional connectivity using extended partial direct coherence (PDC). A sustained leftward shift in the theta peak frequency was found early in the power spectra of hippocampal CA1 networks ipsilateral to the injection site. Strikingly, hippocampal CA1 coherence and Eglob measures were impaired in K18-treated animals. Estimation of instantaneous EEG amplitudes revealed deficiency in the propagation directionality of gamma oscillations in the CA1 circuit. Impaired PAC strength evidenced by decreased modulation of the theta frequency phase on gamma frequency amplitude further confirms impairments of the neural CA1 network. The present results demonstrate early dysfunctional hippocampal networks, despite no spreading tau pathology to the hippocampus and frontal cortex. The ability of the K18 seed in the brainstem LC to elicit such robust functional alterations in distant hippocampal structures in the absence of pathology challenges the classic view that tau pathology spread to an area is necessary to elicit functional impairments in that area
- …