526 research outputs found

    Environmental life cycle assessment and techno-economic analysis of triboelectric nanogenerators

    Get PDF
    As the world economy grows and industrialization of the developing countries increases, the demand for energy continues to rise. Triboelectric nanogenerators (TENGs) have been touted as having great potential for low-carbon, non-fossil fuel energy generation. Mechanical energies from, amongst others, body motion, vibration, wind and waves are captured and converted by TENGs to harvest electricity, thereby minimizing global fossil fuel consumption. However, only by ascertaining performance efficiency along with low material and manufacturing costs as well as a favorable environmental profile in comparison with other energy harvesting technologies, can the true potential of TENGs be established. This paper presents a detailed techno-economic lifecycle assessment of two representative examples of TENG modules, one with a high performance efficiency (Module A) and the other with a lower efficiency (Module B) both fabricated using low-cost materials. The results are discussed across a number of sustainability metrics in the context of other energy harvesting technologies, notably photovoltaics. Module A possesses a better environmental profile, lower cost of production, lower CO2 emissions and shorter energy payback period (EPBP) compared to Module B. However, the environmental profile of Module B is slightly degraded due to the higher content of acrylic in its architecture and higher electrical energy consumption during fabrication. The end of life scenario of acrylic is environmentally viable given its recyclability and reuse potential and it does not generate toxic gases that are harmful to humans and the environment during combustion processes due to its stability during exposure to ultraviolet radiation. Despite the adoption of a less optimum laboratory manufacturing route, TENG modules generally have a better environmental profile than commercialized Si based and organic solar cells, but Module B has a slightly higher energy payback period than PV technology based on perovskite-structured methyl ammonium lead iodide. Overall, we recommend that future research into TENGs should focus on improving system performance, material optimization and more importantly improving their lifespan to realize their full potential

    Prevalence of Self-Medication of Psychoactive Stimulants and Antidepressants among Undergraduate Pharmacy Students in Twelve Pakistani Cities

    Get PDF
    Purpose: To evaluate the prevalence of self-medication of psychoactive stimulants and antidepressants among pharmacy students of Pakistan.Methods: A cross-sectional survey on self-medication of psychoactive stimulants and antidepressants among pharmacy students was conducted with a structured and validated questionnaire distributed to a total of 2981 final year undergraduate pharmacy students in 12 major Pakistani cities (Karachi, Lahore, Islamabad, Rawalpindi, Sargodha, Dera Ismail Khan, Abbottabad, Bahawalpur, Hyderabad, Faisalabad, Multan and Peshawar) of Pakistan. Out of this, 2516 (718 male and 1798 female) students completed and returned the questionnaire.Results: Prevalence of self-medication of psychoactive stimulants was 1.31 (1.13 – 1.75 for 95% CI) and antidepressants was 8.34 (8.03 – 8.85 for 95% CI). A majority of the students (63 %) identified academic competition as a driving force for indulging in self-medication of psychoactive stimulants while nearly all the students (96 %)admitted using antidepressants to obtain relief from the pressure of studies (p < 0.05).Conclusion: Pakistani pharmacy students, despite being aware of the hazards of psychoactive stimulants, indulge in self-medication. Prevalence of self-medication with antidepressants is very high among the students due to the pressure of studies. Primarily, academic competition is the major driving force for the use of psychoactive stimulants.Keywords: Self-medication, Psychoactive stimulants, Antidepressants, Pharmacy students, Academicpressur

    Alterations and test-retest reliability of functional connectivity network measures in cerebral small vessel disease

    Get PDF
    While structural network analysis consolidated the hypothesis of cerebral small vessel disease (SVD) being a disconnection syndrome, little is known about functional changes on the level of brain networks. In patients with genetically defined SVD (CADASIL,n= 41) and sporadic SVD (n= 46), we independently tested the hypothesis that functional networks change with SVD burden and mediate the effect of disease burden on cognitive performance, in particular slowing of processing speed. We further determined test-retest reliability of functional network measures in sporadic SVD patients participating in a high-frequency (monthly) serial imaging study (RUN DMC-InTENse, median: 8 MRIs per participant). Functional networks for the whole brain and major subsystems (i.e., default mode network, DMN;fronto-parietal task control network, FPCN;visual network, VN;hand somatosensory-motor network, HSMN) were constructed based on resting-state multi-band functional MRI. In CADASIL, global efficiency (a graph metric capturing network integration) of the DMN was lower in patients with high disease burden (standardized beta = -.44;p[corrected] = .035) and mediated the negative effect of disease burden on processing speed (indirect path: std. beta = -.20,p= .047;direct path: std. beta = -.19,p= .25;total effect: std. beta = -.39,p= .02). The corresponding analyses in sporadic SVD showed no effect. Intraclass correlations in the high-frequency serial MRI dataset of the sporadic SVD patients revealed poor test-retest reliability and analysis of individual variability suggested an influence of age, but not disease burden, on global efficiency. In conclusion, our results suggest that changes in functional connectivity networks mediate the effect of SVD-related brain damage on cognitive deficits. However, limited reliability of functional network measures, possibly due to age-related comorbidities, impedes the analysis in elderly SVD patients

    Location of Pathogenic Bacteria during Persistent Infections: Insights from an Analysis Using Game Theory

    Get PDF
    Bacterial persistent infections are responsible for a significant amount of the human morbidity and mortality. Unlike acute bacterial infections, it is very difficult to treat persistent bacterial infections (e.g. tuberculosis). Knowledge about the location of pathogenic bacteria during persistent infection will help to treat such conditions by designing novel drugs which can reach such locations. In this study, events of bacterial persistent infections were analyzed using game theory. A game was defined where the pathogen and the host are the two players with a conflict of interest. Criteria for the establishment of Nash equilibrium were calculated for this game. This theoretical model, which is very simple and heuristic, predicts that during persistent infections pathogenic bacteria stay in both intracellular and extracellular compartments of the host. The result of this study implies that a bacterium should be able to survive in both intracellular and extracellular compartments of the host in order to cause persistent infections. This explains why persistent infections are more often caused by intracellular pathogens like Mycobacterium and Salmonella. Moreover, this prediction is in consistence with the results of previous experimental studies

    Heritable pattern of oxidized DNA base repair coincides with pre-targeting of repair complexes to open chromatin

    Get PDF
    Human genome stability requires efficient repair of oxidized bases, which is initiated via damage recognition and excision by NEIL1 and other base excision repair (BER) pathway DNA glycosylases (DGs). However, the biological mechanisms underlying detection of damaged bases among the million-fold excess of undamaged bases remain enigmatic. Indeed, mutation rates vary greatly within individual genomes, and lesion recognition by purified DGs in the chromatin context is inefficient. Employing super-resolution microscopy and co-immunoprecipitation assays, we find that acetylated NEIL1 (AcNEIL1), but not its non-acetylated form, is predominantly localized in the nucleus in association with epigenetic marks of uncondensed chromatin. Furthermore, chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) revealed non-random AcNEIL1 binding near transcription start sites of weakly transcribed genes and along highly transcribed chromatin domains. Bioinformatic analyses revealed a striking correspondence between AcNEIL1 occupancy along the genome and mutation rates, with AcNEIL1-occupied sites exhibiting fewer mutations compared to AcNEIL1-free domains, both in cancer genomes and in population variation. Intriguingly, from the evolutionarily conserved unstructured domain that targets NEIL1 to open chromatin, its damage surveillance of highly oxidation-susceptible sites to preserve essential gene function and to limit instability and cancer likely originated ∼500 million years ago during the buildup of free atmospheric oxygen
    corecore