43 research outputs found

    Formation and dynamics of van der Waals molecules in buffer-gas traps

    Full text link
    We show that weakly bound He-containing van der Waals molecules can be produced and magnetically trapped in buffer-gas cooling experiments, and provide a general model for the formation and dynamics of these molecules. Our analysis shows that, at typical experimental parameters, thermodynamics favors the formation of van der Waals complexes composed of a helium atom bound to most open-shell atoms and molecules, and that complex formation occurs quickly enough to ensure chemical equilibrium. For molecular pairs composed of a He atom and an S-state atom, the molecular spin is stable during formation, dissociation, and collisions, and thus these molecules can be magnetically trapped. Collisional spin relaxations are too slow to affect trap lifetimes. However, helium-3-containing complexes can change spin due to adiabatic crossings between trapped and untrapped Zeeman states, mediated by the anisotropic hyperfine interaction, causing trap loss. We provide a detailed model for Ag3He molecules, using ab initio calculation of Ag-He interaction potentials and spin interactions, quantum scattering theory, and direct Monte Carlo simulations to describe formation and spin relaxation in this system. The calculated rate of spin-change agrees quantitatively with experimental observations, providing indirect evidence for molecular formation in buffer-gas-cooled magnetic traps.Comment: 20 pages, 13 figure

    Atomic Resonance and Scattering

    Get PDF
    Contains reports on nine research projects.National Science Foundation (Grant PHY79-09743)National Science Foundation (Grant PHY82-10486)Joint Services Electronics Program (Contract DAAG29-83-K-0003)U.S. Navy - Office of Naval Research (Contract N00014-79-C-0183)National Bureau of Standards (Grant NB83-NAHA-4058)National Science Foundation (Grant CHE79-02967-A04)National Science Foundation (Grant PHY83-07172)Joint Services Electronics Program (Grant DAAG29-83-K-0003

    Atomic Resonance and Scattering

    Get PDF
    Contains reports on eight research projects.National Science Foundation (Grant PHY83-06273)National Bureau of Standards (Grant NB83-NAHA-4058)National Science Foundation (Grant PHY84-11483)Joint Services Electronics Program (Contract DAAG29-83-K-0003)U.S. Navy - Office of Naval Research (Contract NO0014-79-C-0183)U.S. Navy - Office of Naval Research (Contract N00014-83-K-0695)National Science Foundation (Grant PHY83-07172-A01

    Atomic Resonance and Scattering

    Get PDF
    Contains reports on six research projects.National Science Foundation (Grant PHY 83-06273)U.S. Navy - Office of Naval Research (Contract N00014-79-C-0183)Joint Services Electronics Program (Contract DAALO03-86-K-0002)National Science Foundation (Grant PHY 84-11483)National Science Foundation (Grant PHY 86-05893)National Science Foundation (Grant ECS 84-21392)U.S. Navy - Office of Naval Research (Contract N00014-83-K-0695)National Science Foundation (Grant CHE 84-21392

    Atomic Resonance and Scattering

    Get PDF
    Contains reports on six research projects.National Science Foundation (PHY83-06273)Joint Services Electronics Program (DAAL03-86-K-0002)National Science Foundation (PHY84-11483)U.S. Navy-Office of Naval Research (Grant N00014-79-C-0183)Joint Services Electronics Program (Contract DAAG29-83-K-0003)National Science Foundation (Grant PHY83-07172-A01)U.S. Navy - Office of Naval Research (Grant N00014-83-K-0695)National Science Foundation (Grant CHE84-21392

    Origin and insertion of the medial patellofemoral ligament: a systematic review of anatomy.

    Get PDF
    PURPOSE: The medial patellofemoral ligament (MPFL) is the major medial soft-tissue stabiliser of the patella, originating from the medial femoral condyle and inserting onto the medial patella. The exact position reported in the literature varies. Understanding the true anatomical origin and insertion of the MPFL is critical to successful reconstruction. The purpose of this systematic review was to determine these locations. METHODS: A systematic search of published (AMED, CINAHL, MEDLINE, EMBASE, PubMed and Cochrane Library) and unpublished literature databases was conducted from their inception to the 3 February 2016. All papers investigating the anatomy of the MPFL were eligible. Methodological quality was assessed using a modified CASP tool. A narrative analysis approach was adopted to synthesise the findings. RESULTS: After screening and review of 2045 papers, a total of 67 studies investigating the relevant anatomy were included. From this, the origin appears to be from an area rather than (as previously reported) a single point on the medial femoral condyle. The weighted average length was 56 mm with an 'hourglass' shape, fanning out at both ligament ends. CONCLUSION: The MPFL is an hourglass-shaped structure running from a triangular space between the adductor tubercle, medial femoral epicondyle and gastrocnemius tubercle and inserts onto the superomedial aspect of the patella. Awareness of anatomy is critical for assessment, anatomical repair and successful surgical patellar stabilisation. LEVEL OF EVIDENCE: Systematic review of anatomical dissections and imaging studies, Level IV

    Comparison between SMOS, VUA, ASCAT, and ECMWF soil moisture products over four watersheds in U.S.

    Get PDF
    As part of the Soil Moisture and Ocean Salinity (SMOS) validation process, a comparison of the skills of three satellites [SMOS, Advanced Microwave Scanning Radiometer- Earth Observing System (AMSR-E) or Advanced Microwave Scanning Radiometer, and Advanced Scatterometer (ASCAT)], and one-model European Centre for Medium Range Weather Forecasting (ECMWF) soil moisture products is conducted over four watersheds located in the U.S. The four products compared in for 2010 over four soil moisture networks were used for the calibration of AMSR-E. The results indicate that SMOS retrievals are closest to the ground measurements with a low average root mean square error of 0.061 m 3* m−3 for the morning overpass and 0.067 m 3* m−3 for the afternoon overpass, which represents an improvement by a factor of 2-3 compared with the other products. The ECMWF product has good correlation coefficients (around 0.78) but has a constant bias of 0.1-0.2 m 3* m−3 over the four networks. The land parameter retrieval model AMSR-E product gives reasonable results in terms of correlation (around 0.73) but has a variable seasonal bias over the year. The ASCAT soil moisture index is found to be very noisy and unstable
    corecore