6 research outputs found
Development of nuclear emulsions operating in vacuum for the AEgIS experiment
For the first time the AEgIS (Antihydrogen Experiment: Gravity, Interferometry, Spectroscopy) experiment will measure the Earth\u2019s local gravitational acceleration g on antimatter through the evaluation of the vertical displacement of an antihydrogen horizontal beam. This will be a model independent test of the Weak Equivalence Principle at the base of the general relativity. The initial goal of a g measurement with a relative uncertainty of 1% will be achieved with less than 1000 detected antihydrogens, provided that their vertical position could be determined with a precision of a few micrometers. An emulsion based detector is very suitable for this purpose featuring an intrinsic sub-micrometric spatial resolution. Nevertheless, the AEgIS experiment re- quires unprecedented operational conditions for this type of detector, namely vacuum environment and very low temperature. An intense R&D activity is presently going on to optimize the detector for the AEgIS experimental requirements with rather encouraging results
Detection of low energy antiproton annihilations in a segmented silicon detector
The goal of the AEbar gIS experiment at the Antiproton Decelerator (AD) at CERN, is to measure directly the Earth's gravitational acceleration on antimatter by measuring the free fall of a pulsed, cold antihydrogen beam. The final position of the falling antihydrogen will be detected by a position sensitive detector. This detector will consist of an active silicon part, where the annihilations take place, followed by an emulsion part. Together, they allow to achieve 1% precision on the measurement of bar g with about 600 reconstructed and time tagged annihilations. We present here the prospects for the development of the AEbar gIS silicon position sentive detector and the results from the first beam tests on a monolithic silicon pixel sensor, along with a comparison to Monte Carlo simulations
Measuring GBAR with emulsion detector
The motivation of the AEgIS experiment is to test the universality of free fall with antimatter. The goal is to reach a relative uncertainty of 1% for the measurement of the earth’s gravitational acceleration g on an antihydrogen beam. High vertex position resolution is required for a position detector. An emulsion based detector can measure the annihilation vertex of antihydrogen atoms with a resolution of 1-2 μm, which if realized in the actual experiment will enable a 1% measurement of g with less than 1000 H atoms. Developments and achievements on emulsion detectors for the AEgIS experiment are presented here
Measuring with , progress and perspectives
Aegis experiment's main goal is to measure the local gravitational acceleration of antihydrogen g and thus perform a direct test of the weak equivalence principle with antimatter. In the first phase of the experiment the aim is to measure g with 1% relative precision. This paper presents the antihydrogen production method and a description of some components of the experiment, which are necessary for the gravity measurement. Current status of the Aegis experimental apparatus is presented and recent commissioning results with antiprotons are outlined. In conclusion we discuss the short-term goals of the Aegis collaboration that will pave the way for the first gravity measurement in the near future
The AEgIS Experiment
The AEgIS experiment aims at performing the first test of the Weak Equivalence Principle of General Relativity in the antimatter sector by measuring the gravitational acceleration acting on a beam of cold antihydrogen to a precision of 1%. The installation of the apparatus is making good progress and large parts were taken into operation. Parasitic detector tests during the beamtime in December 2012 gave essential input for an optimal moiré deflectometer and the detector layout necessary to perform the gravity measurement
Particle tracking at 4K: The Fast Annihilation Cryogenic Tracking (FACT) detector for the AEgIS antimatter gravity experiment
The AEgIS experiment is an international collaboration with the main goal of performing the first direct measurement of the Earth's gravitational acceleration on antimatter. Critical to the success of AEgIS is the production of cold antihydrogen (H) atoms. The FACT detector is used to measure the production and temperature of the H atoms and for establishing the formation of a H beam. The operating requirements
for this detector are very challenging: it must be able to identify each of the thousand or so annihilations in the 1 ms period of pulsed H production, operate at 4 K inside a 1 T solenoidal field and not produce
more than 10 W of heat. The FACT detector consists of two concentric cylindrical layers of 400 scintillator fibres with a 1 mm diameter and a 0.6 mm pitch. The scintillating fibres are coupled to clear fibres which
transport the scintillation light to 800 silicon photomultipliers. Each silicon photomultiplier signal is connected to a linear amplifier and a fast discriminator, the outputs of which are sampled continuously by Field Programmable Gate Arrays (FPGAs). In the course of the developments for the FACT detector we have established the performance of scintillating fibres at 4 K by means of a cosmic-ray tracker operating in a liquid helium cryostat. The FACT detector was installed in the AEgIS apparatus in December 2012 and will be used to study the H formation when the low energy antiproton physics programs resume at CERN in the Summer of 2014. This paper presents the design requirements and construction methods of the FACT detector and provides the first results of the detector commissioning