10 research outputs found

    Automation practices in large molecule bioanalysis: Recommendations from group l5 of the global bioanalytical consortium

    No full text
    In recent years, the use of automated sample handling instrumentation has come to the forefront of bioanalytical analysis in order to ensure greater assay consistency and throughput. Since robotic systems are becoming part of everyday analytical procedures, the need for consistent guidance across the pharmaceutical industry has become increasingly important. Pre-existing regulations do not go into sufficient detail in regard to how to handle the use of robotic systems for use with analytical methods, especially large molecule bioanalysis. As a result, Global Bioanalytical Consortium (GBC) Group L5 has put forth specific recommendations for the validation, qualification, and use of robotic systems as part of large molecule bioanalytical analyses in the present white paper. The guidelines presented can be followed to ensure that there is a consistent, transparent methodology that will ensure that robotic systems can be effectively used and documented in a regulated bioanalytical laboratory setting. This will allow for consistent use of robotic sample handling instrumentation as part of large molecule bioanalysis across the globe. 2013 American Association of Pharmaceutical Scientist

    Safety and Pharmacokinetics of XOMA 3AB, a Novel Mixture of Three Monoclonal Antibodies against Botulinum Toxin A

    No full text
    Botulinum neurotoxin A is a category A bioterrorism agent. Current antitoxin therapies are scarce and produce adverse reactions. XOMA 3AB consists of 3 IgG1 monoclonal antibodies (MAbs), each with a distinct human or humanized variable region, which bind to distinct epitopes on botulinum neurotoxin serotype A. This first-in-human study evaluated the safety and pharmacokinetics (PK) of escalating doses of XOMA 3AB administered intravenously (i.v.) to healthy adults. In this double-blind placebo-controlled dose escalation study, 3 cohorts of 8 healthy subjects received a single intravenous dose of XOMA 3AB or placebo at a 3:1 ratio. Follow-up examinations included physical examinations, hematology and chemistry blood tests, electrocardiograms, and pharmacokinetics. Pharmacokinetic parameters were estimated using noncompartmental methods. There were no infusion discontinuations or hypersensitivity reactions. Two or more subjects experienced headache, hyperglycemia, or anemia; none was dose related. All adverse events (AEs) were mild to moderate except for an episode of exercise-induced elevation of a subject's creatine phosphokinase (CPK) level, unrelated to XOMA 3AB. Concentration-time plots demonstrated a peak in MAb concentrations 1 to 2 h after completion of the infusion, after which the levels declined in a biexponential decay pattern for all analytes. For each MAb, the maximum concentration of drug in serum (C(max)) and the area under the concentration-time curve from 0 to infinity (AUC(inf)) increased as the dose increased. Clearance of the humanized mouse MAb was more rapid than that of the two fully human MAbs, particularly at the lowest dose. None of the MAbs was immunogenic. At the doses administered, XOMA 3AB was well tolerated. These safety findings support further investigation of XOMA 3AB as a potential agent for botulism treatment and postexposure prophylaxis. (This study has been registered at ClinicalTrials.gov under registration no. NCT01357213.

    Bioanalytical Approaches to Quantify “Total” and “Free” Therapeutic Antibodies and Their Targets: Technical Challenges and PK/PD Applications Over the Course of Drug Development

    No full text
    The predominant driver of bioanalysis in supporting drug development is the intended use of the data. Ligand-binding assays (LBA) are widely used for the analysis of protein biotherapeutics and target ligands (L) to support pharmacokinetics/pharmacodynamics (PK/PD) and safety assessments. For monoclonal antibody drugs (mAb), in particular, which non-covalently bind to L, multiple forms of mAb and L can exist in vivo, including free mAb, free L, and mono- and/or bivalent complexes of mAb and L. Given the complexity of the dynamic binding equilibrium occurring in the body after dosing and multiple sources of perturbation of the equilibrium during bioanalysis, it is clear that ex vivo quantification of the forms of interest (free, bound, or total mAb and L) may differ from the actual ones in vivo. LBA reagents and assay formats can be designed in principle to measure the total or free forms of mAb and L. However, confirmation of the forms being measured under the specified conditions can be technically challenging. The assay forms and issues must be clearly communicated and understood appropriately by all stakeholders as the program proceeds through the development process. This paper focuses on monoclonal antibody biotherapeutics and their circulatory L that are either secreted as soluble forms or shed from membrane receptors. It presents an investigation into the theoretical and practical considerations for total/free analyte assessment to increase awareness in the scientific community and offer bioanalytical approaches to provide appropriate PK/PD information required at specific phases of drug development

    Effect of Intraoperative High Positive End-Expiratory Pressure (PEEP) with Recruitment Maneuvers vs Low PEEP on Postoperative Pulmonary Complications in Obese Patients: A Randomized Clinical Trial

    Get PDF
    Importance: An intraoperative higher level of positive end-expiratory positive pressure (PEEP) with alveolar recruitment maneuvers improves respiratory function in obese patients undergoing surgery, but the effect on clinical outcomes is uncertain. Objective: To determine whether a higher level of PEEP with alveolar recruitment maneuvers decreases postoperative pulmonary complications in obese patients undergoing surgery compared with a lower level of PEEP. Design, Setting, and Participants: Randomized clinical trial of 2013 adults with body mass indices of 35 or greater and substantial risk for postoperative pulmonary complications who were undergoing noncardiac, nonneurological surgery under general anesthesia. The trial was conducted at 77 sites in 23 countries from July 2014-February 2018; final follow-up: May 2018. Interventions: Patients were randomized to the high level of PEEP group (n = 989), consisting of a PEEP level of 12 cm H2O with alveolar recruitment maneuvers (a stepwise increase of tidal volume and eventually PEEP) or to the low level of PEEP group (n = 987), consisting of a PEEP level of 4 cm H2O. All patients received volume-controlled ventilation with a tidal volume of 7 mL/kg of predicted body weight. Main Outcomes and Measures: The primary outcome was a composite of pulmonary complications within the first 5 postoperative days, including respiratory failure, acute respiratory distress syndrome, bronchospasm, new pulmonary infiltrates, pulmonary infection, aspiration pneumonitis, pleural effusion, atelectasis, cardiopulmonary edema, and pneumothorax. Among the 9 prespecified secondary outcomes, 3 were intraoperative complications, including hypoxemia (oxygen desaturation with Spo2 ≀92% for >1 minute). Results: Among 2013 adults who were randomized, 1976 (98.2%) completed the trial (mean age, 48.8 years; 1381 [69.9%] women; 1778 [90.1%] underwent abdominal operations). In the intention-to-treat analysis, the primary outcome occurred in 211 of 989 patients (21.3%) in the high level of PEEP group compared with 233 of 987 patients (23.6%) in the low level of PEEP group (difference, -2.3% [95% CI, -5.9% to 1.4%]; risk ratio, 0.93 [95% CI, 0.83 to 1.04]; P =.23). Among the 9 prespecified secondary outcomes, 6 were not significantly different between the high and low level of PEEP groups, and 3 were significantly different, including fewer patients with hypoxemia (5.0% in the high level of PEEP group vs 13.6% in the low level of PEEP group; difference, -8.6% [95% CI, -11.1% to 6.1%]; P <.001). Conclusions and Relevance: Among obese patients undergoing surgery under general anesthesia, an intraoperative mechanical ventilation strategy with a higher level of PEEP and alveolar recruitment maneuvers, compared with a strategy with a lower level of PEEP, did not reduce postoperative pulmonary complications. Trial Registration: ClinicalTrials.gov Identifier: NCT02148692

    Effect of Intraoperative High Positive End-Expiratory Pressure (PEEP) With Recruitment Maneuvers vs Low PEEP on Postoperative Pulmonary Complications in Obese Patients A Randomized Clinical Trial

    No full text

    Effect of Intraoperative High Positive End-Expiratory Pressure (PEEP) With Recruitment Maneuvers vs Low PEEP on Postoperative Pulmonary Complications in Obese Patients: A Randomized Clinical Trial (vol 321, pg 2292, 2019)

    No full text
    status: publishe

    Effect of Intraoperative High Positive End-Expiratory Pressure (PEEP) With Recruitment Maneuvers vs Low PEEP on Postoperative Pulmonary Complications in Obese Patients: A Randomized Clinical Trial.

    No full text
    IMPORTANCE An intraoperative higher level of positive end-expiratory positive pressure (PEEP) with alveolar recruitment maneuvers improves respiratory function in obese patients undergoing surgery, but the effect on clinical outcomes is uncertain

    Effect of intraoperative high Positive End-Expiratory Pressure (PEEP) with recruitment maneuvers vs low PEEP on postoperative pulmonary complications in obese patients : a randomized clinical trial

    No full text
    IMPORTANCE An intraoperative higher level of positive end-expiratory positive pressure (PEEP) with alveolar recruitment maneuvers improves respiratory function in obese patients undergoing surgery, but the effect on clinical outcomes is uncertain. OBJECTIVE To determine whether a higher level of PEEP with alveolar recruitment maneuvers decreases postoperative pulmonary complications in obese patients undergoing surgery compared with a lower level of PEEP. DESIGN, SETTING, AND PARTICIPANTS Randomized clinical trial of 2013 adults with body mass indices of 35 or greater and substantial risk for postoperative pulmonary complications who were undergoing noncardiac, nonneurological surgery under general anesthesia. The trial was conducted at 77 sites in 23 countries from July 2014-February 2018; final follow-up: May 2018. INTERVENTIONS Patients were randomized to the high level of PEEP group (n = 989), consisting of a PEEP level of 12 cm H2O with alveolar recruitment maneuvers (a stepwise increase of tidal volume and eventually PEEP) or to the low level of PEEP group (n = 987), consisting of a PEEP level of 4 cm H2O. All patients received volume-controlled ventilation with a tidal volume of 7 mL/kg of predicted body weight. MAIN OUTCOMES AND MEASURES The primary outcomewas a composite of pulmonary complications within the first 5 postoperative days, including respiratory failure, acute respiratory distress syndrome, bronchospasm, new pulmonary infiltrates, pulmonary infection, aspiration pneumonitis, pleural effusion, atelectasis, cardiopulmonary edema, and pneumothorax. Among the 9 prespecified secondary outcomes, 3 were intraoperative complications, including hypoxemia (oxygen desaturation with SpO(2) 1 minute). RESULTS Among 2013 adults who were randomized, 1976 (98.2%) completed the trial (mean age, 48.8 years; 1381 [69.9%] women; 1778 [90.1%] underwent abdominal operations). In the intention-to-treat analysis, the primary outcome occurred in 211 of 989 patients (21.3%) in the high level of PEEP group compared with 233 of 987 patients (23.6%) in the low level of PEEP group (difference, -2.3%[95% CI, -5.9% to 1.4%]; risk ratio, 0.93 [95% CI, 0.83 to 1.04]; P =.23). Among the 9 prespecified secondary outcomes, 6 were not significantly different between the high and low level of PEEP groups, and 3 were significantly different, including fewer patients with hypoxemia (5.0% in the high level of PEEP group vs 13.6% in the low level of PEEP group; difference, -8.6%[95% CI, -11.1% to 6.1%]; P <.001). CONCLUSIONS AND RELEVANCE Among obese patients undergoing surgery under general anesthesia, an intraoperative mechanical ventilation strategy with a higher level of PEEP and alveolar recruitment maneuvers, compared with a strategy with a lower level of PEEP, did not reduce postoperative pulmonary complications
    corecore