39 research outputs found

    The H.E.S.S. extragalactic sky

    Full text link
    The H.E.S.S. Cherenkov telescope array, located on the southern hemisphere in Namibia, studies very high energy (VHE; E>100 GeV) gamma-ray emission from astrophysical objects. During its successful operations since 2002 more than 80 galactic and extra-galactic gamma-ray sources have been discovered. H.E.S.S. devotes over 400 hours of observation time per year to the observation of extra-galactic sources resulting in the discovery of several new sources, mostly AGNs, and in exciting physics results e.g. the discovery of very rapid variability during extreme flux outbursts of PKS 2155-304, stringent limits on the density of the extragalactic background light (EBL) in the near-infrared derived from the energy spectra of distant sources, or the discovery of short-term variability in the VHE emission from the radio galaxy M 87. With the recent launch of the Fermi satellite in 2008 new insights into the physics of AGNs at GeV energies emerged, leading to the discovery of several new extragalactic VHE sources. Multi-wavelength observations prove to be a powerful tool to investigate the production mechanism for VHE emission in AGNs. Here, new results from H.E.S.S. observations of extragalactic sources will be presented and their implications for the physics of these sources will be discussed.Comment: 8 pages, 6 figures, invited review talk, in the proceedings of the "International Workshop on Beamed and Unbeamed Gamma-Rays from Galaxies" 11-15 April 2011, Lapland Hotel Olos, Muonio, Finland, Journal of Physics: Conference Series Volume 355, 201

    High Energy Neutrinos: Sources and Fluxes

    Full text link
    We discuss briefly the potential sources of high energy astrophysical neutrinos and show estimates of the neutrino fluxes that they can produce. A special attention is paid to the connection between the highest energy cosmic rays and astrophysical neutrinos.Comment: 7 pages, 2 figures, submitted to the Proceedings of TAUP 2005 workshop, corrected left panel of figure

    Dense molecular gas at 12 mm towards Galactic TeV gamma-ray sources

    Get PDF
    The High Energy Stereoscopic System has revealed many TeV (1012 eV) gamma-ray sources along the Galactic plane, and around 30 per cent of these sources remain unidentified. The morphology and dynamics of dense gas coincident and surrounding the gamma-ray emission can provide clues about the nature of the TeV emission. The H2O Southern Galactic Plane Survey (HOPS) undertaken with the Mopra radio telescope includes several dense gas tracers, such as NH3 (n,n) transitions and HC3N (3–2), star formation tracers including H2O masers and radio recombination lines that trace ionized gas. A search for dense gas, traced by NH3 (1,1) emission seen in HOPS and additional observations, towards Galactic TeV sources has been undertaken. Of the 49 Galactic TeV sources covered by 12 mm observations, NH3 (1,1) is detected towards or adjacent to 38 of them. Dense gas counterparts have been detected near several unidentified Galactic TeV sources that display morphology pointing to a hadronic origin to the TeV gamma-rays. The dense gas detected towards some TeV sources displays unusual emission characteristics, including very broad linewidths and enhanced ortho-to-para NH3 abundance ratios towards HESS J1745−303 and HESS J1801−233, which reflects previous shock activity within the gas

    Fitting the Gamma-Ray Spectrum from Dark Matter with DMFIT: GLAST and the Galactic Center Region

    Full text link
    We study the potential of GLAST to unveil particle dark matter properties with gamma-ray observations of the Galactic center region. We present full GLAST simulations including all gamma-ray sources known to date in a region of 4 degrees around the Galactic center, in addition to the diffuse gamma-ray background and to the dark matter signal. We introduce DMFIT, a tool that allows one to fit gamma-ray emission from pair-annihilation of generic particle dark matter models and to extract information on the mass, normalization and annihilation branching ratios into Standard Model final states. We assess the impact and systematic effects of background modeling and theoretical priors on the reconstruction of dark matter particle properties. Our detailed simulations demonstrate that for some well motivated supersymmetric dark matter setups with one year of GLAST data it will be possible not only to significantly detect a dark matter signal over background, but also to estimate the dark matter mass and its dominant pair-annihilation mode.Comment: 37 pages, 16 figures, submitted to JCA

    Particle Acceleration in Cosmic Sites - Astrophysics Issues in our Understanding of Cosmic Rays

    Full text link
    Laboratory experiments to explore plasma conditions and stimulated particle acceleration can illuminate aspects of the cosmic particle acceleration process. Here we discuss the cosmic-ray candidate source object variety, and what has been learned about their particle-acceleration characteristics. We identify open issues as discussed among astrophysicists. -- The cosmic ray differential intensity spectrum is a rather smooth power-law spectrum, with two kinks at the "knee" (~10^15 eV) and at the "ankle" (~3 10^18 eV). It is unclear if these kinks are related to boundaries between different dominating sources, or rather related to characteristics of cosmic-ray propagation. We believe that Galactic sources dominate up to 10^17 eV or even above, and the extragalactic origin of cosmic rays at highest energies merges rather smoothly with Galactic contributions throughout the 10^15--10^18 eV range. Pulsars and supernova remnants are among the prime candidates for Galactic cosmic-ray production, while nuclei of active galaxies are considered best candidates to produce ultrahigh-energy cosmic rays of extragalactic origin. Acceleration processes are related to shocks from violent ejections of matter from energetic sources such as supernova explosions or matter accretion onto black holes. Details of such acceleration are difficult, as relativistic particles modify the structure of the shock, and simple approximations or perturbation calculations are unsatisfactory. This is where laboratory plasma experiments are expected to contribute, to enlighten the non-linear processes which occur under such conditions.Comment: accepted for publication in EPJD, topical issue on Fundamental physics and ultra-high laser fields. From review talk at "Extreme Light Infrastructure" workshop, Sep 2008. Version-2 May 2009: adjust some wordings and references at EPJD proofs stag

    Determining Supersymmetric Parameters With Dark Matter Experiments

    Get PDF
    In this article, we explore the ability of direct and indirect dark matter experiments to not only detect neutralino dark matter, but to constrain and measure the parameters of supersymmetry. In particular, we explore the relationship between the phenomenological quantities relevant to dark matter experiments, such as the neutralino annihilation and elastic scattering cross sections, and the underlying characteristics of the supersymmetric model, such as the values of mu (and the composition of the lightest neutralino), m_A and tan beta. We explore a broad range of supersymmetric models and then focus on a smaller set of benchmark models. We find that by combining astrophysical observations with collider measurements, mu can often be constrained far more tightly than it can be from LHC data alone. In models in the A-funnel region of parameter space, we find that dark matter experiments can potentially determine m_A to roughly +/-100 GeV, even when heavy neutral MSSM Higgs bosons (A, H_1) cannot be observed at the LHC. The information provided by astrophysical experiments is often highly complementary to the information most easily ascertained at colliders.Comment: 46 pages, 76 figure

    Radio Halos From Simulations And Hadronic Models I: The Coma cluster

    Full text link
    We use the results from a constrained, cosmological MHD simulation of the Local Universe to predict the radio halo and the gamma-ray flux from the Coma cluster and compare it to current observations. The simulated magnetic field within the Coma cluster is the result of turbulent amplification of the magnetic field during build-up of the cluster. The magnetic seed field originates from star-burst driven, galactic outflows. The synchrotron emission is calculated assuming a hadronic model. We follow four approaches with different distributions for the cosmic-ray proton (CRp) population within galaxy clusters. The radial profile the radio halo can only be reproduced with a radially increasing energy fraction within the cosmic ray proton population, reaching >>100% of the thermal energy content at ≈\approx 1Mpc, e.g. the edge of the radio emitting region. Additionally the spectral steepening of the observed radio halo in Coma cannot be reproduced, even when accounting for the negative flux from the thermal SZ effect at high frequencies. Therefore the hadronic models are disfavored from present analysis. The emission of γ\gamma-rays expected from our simulated coma is still below the current observational limits (by a factor of ∼\sim6) but would be detectable in the near future.Comment: Submitted to MNRAS, 5pages, 3 figures, 1 tabl

    Diffuse Neutrino and Gamma-ray Emissions of the Galaxy above the TeV

    Get PDF
    We simulate the neutrino and γ\gamma-ray emissions of the Galaxy which are originated from the hadronic scattering of cosmic rays (CR) with the interstellar medium (ISM). Rather than assuming a uniform CR density, we estimate the spatial distribution of CR nuclei by means of numerical simulations. We consider several models of the galactic magnetic field and of the ISM distribution finding only a weak dependence of our results on their choice. We found that by extrapolating the predicted γ\gamma-ray spectra down to few GeV we get a good agreement with EGRET measurements. Then, we can reliably compare our predictions with available observations above the TeV both for the γ\gamma-rays and the neutrinos. We confirm that the excesses observed by MILAGRO in the Cygnus region and by HESS in the Galactic Centre Ridge cannot be explained without invoking significant CR over-densities in those regions. Finally, we discuss the perspectives that a km3^3 neutrino telescope based in the North hemisphere has to measure the diffuse emission from the inner Galaxy.Comment: 27 pages, 13 figures. Several figures have been added or replaced. A new model for the ISM distribution has been considered. Accepted for publication in JCA

    Neutralino Dark Matter in Mirage Mediation

    Get PDF
    We study the phenomenology of neutralino dark matter (DM) in mirage mediation scenario of supersymmetry breaking which results from the moduli stabilization in some string/brane models. Depending upon the model parameters, especially the anomaly to modulus mediation ratio determined by the moduli stabilization mechanism, the nature of the lightest supersymmetric particle (LSP) changes from Bino-like neutralino to Higgsino-like one via Bino-Higgsino mixing region. For the Bino-like LSP, the standard thermal production mechanism can give a right amount of relic DM density through the stop/stau-neutralino coannihilation or the pseudo-scalar Higgs resonance process. We also examine the prospect of direct and indirect DM detection in various parameter regions of mirage mediation. Neutralino DM in galactic halo might be detected by near future direct detection experiments in the case of Bino-Higgsino mixed LSP. The gamma ray flux from Galactic Center might be detectable also if the DM density profile takes a cuspy shape.Comment: One reference adde

    Study on Cosmic Ray Background Rejection with a 30 m Stand-Alone IACT using Non-parametric Multivariate Methods in a sub-100 GeV Energy Range

    Full text link
    During the last decade ground-based very high-energy gamma-ray astronomy achieved a remarkable advancement in the development of the observational technique for the registration and study of gamma-ray emission above 100 GeV. It is widely believed that the next step in its future development will be the construction of telescopes of substantially larger size than the currently used 10 m class telescopes. This can drastically improve the sensitivity of the ground-based detectors for gamma rays of energy from 10 to 100 GeV. Based on Monte Carlo simulations of the response of a single stand-alone 30 m imaging atmospheric Cherenkov telescope (IACT) the maximal rejection power against background cosmic ray showers for low energy gamma-rays was investigated in great detail. An advanced Bayesian multivariate analysis has been applied to the simulated Cherenkov light images of the gamma-ray- and proton-induced air showers. The results obtained here quantitatively testify that the separation between the signal and background images degrades substantially at low energies, and consequently the maximum overall quality factor can only be about 3.1 for gamma rays in the 10-30 GeV energy range. Various selection criteria as well as optimal combinations of the standard image parameters utilized for effective image separation have been also evaluated.Comment: Accepted for publication in the Journal of Physics
    corecore