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1 INTRODUCTION

ABSTRACT

The High Energy Stereoscopic System has revealed many TeV (10'? eV) gamma-ray sources
along the Galactic plane, and around 30 per cent of these sources remain unidentified. The
morphology and dynamics of dense gas coincident and surrounding the gamma-ray emission
can provide clues about the nature of the TeV emission. The H;O Southern Galactic Plane
Survey (HOPS) undertaken with the Mopra radio telescope includes several dense gas tracers,
such as NH3 (n,n) transitions and HC3;N (3-2), star formation tracers including H,O masers
and radio recombination lines that trace ionized gas. A search for dense gas, traced by NH;
(1,1) emission seen in HOPS and additional observations, towards Galactic TeV sources has
been undertaken. Of the 49 Galactic TeV sources covered by 12 mm observations, NHj (1,1)
is detected towards or adjacent to 38 of them. Dense gas counterparts have been detected
near several unidentified Galactic TeV sources that display morphology pointing to a hadronic
origin to the TeV gamma-rays. The dense gas detected towards some TeV sources displays
unusual emission characteristics, including very broad linewidths and enhanced ortho-to-
para NH3 abundance ratios towards HESS J1745—303 and HESS J1801—233, which reflects
previous shock activity within the gas.

Key words: pulsars: general—ISM: clouds—cosmic rays—ISM: supernova remnants—
gamma-rays: general — gamma-rays: ISM.

ically, through proton—proton interactions, and/or leptonically, via
inverse Compton (IC) scattering or bremsstrahlung. The presence of

The sensitivity of the current generation of ground-based Very High
Energy (VHE) gamma-ray experiments such as the High Energy
Stereoscopic System (HESS; de Ofia Wilhelmi 2009) has led to the
discovery of many previously unknown sources of TeV (10'? eV)
gamma-rays towards the Galactic plane. The largest fraction of
Galactic TeV gamma-ray sources is still made up of unidentified
objects (Puhlhofer et al. 2015).

TeV gamma-rays are produced by interactions of relativistic par-
ticles and so their observation provides a probe of non-thermal as-
trophysical processes. GeV-TeV gamma-rays are produced hadron-
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dense molecular gas can give clues about both leptonic and hadronic
production of TeV gamma-rays.

The flux of gamma-rays that are produced hadronically, through
proton—proton interactions, can be expected to peak along with
the density of gas near proton accelerators. Coincident dense gas
and TeV emission can be seen in sources such as HESS J1801—233
(see Aharonian et al. 2008b), a supernova remnant (SNR)/molecular
cloud interaction region, to the NE of SNR W28, as well as parts of
HESS J1745—303 (Aharonian et al. 2008c) and RX J1713.7—-3946
(Maxted et al. 2012). TeV gamma-ray sources that are produced
leptonically through IC emission, for example pulsar wind neb-
ulae (PWNe), often exhibit asymmetric morphology. In the case
of PWNe, this asymmetry may be explained by an inhomoge-
neous distribution of interstellar gas around pulsars that strongly
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influences their development (e.g. Blondin, Chevalier & Frier-
son 2001). The TeV emission then tails off in a direction away
from the denser parts of the interstellar gas.

Star formation that may not show up as infrared (IR) sources
may be traced by molecular transitions in the 12 mm band pass,
such as H,O masers (Walsh et al. 2011). There is evidence that H,O
masers, signposts of outflows and shocked gas, may be observable
at very early stages of star formation (e.g. Forster & Caswell 2000).
Ionized gas in H1 regions is also traced by radio recombination
lines such as H69« that is included in our study. This provides
an opportunity to test what role star-forming regions play in TeV
gamma-ray emission.

High-mass stars have been linked with TeV gamma-ray emission
through particle acceleration in SNRs and PWNe. High-mass star-
forming regions and/or young high-mass stellar objects may also
have the potential to produce observable TeV gamma-ray emission
through several mechanisms. The regions themselves could be sites
of particle acceleration or the dense gas associated with these re-
gions could simply provide target material for accelerate particles.
Protostellar jets (which could be traced by H,O masers) have been
identified as potential sources of observable GeV gamma-rays (see
Araudo & Rodriguez 2012) where particles are accelerated at the
jet termination shock (e.g. Bosch-Ramon et al. 2010). Colliding
wind binaries (CWBs) have been linked to TeV emission (e.g. Pit-
tard & Dougherty 2006; Bednarek & Pabich 2011), but, so far,
no CWB has been unambiguously associated with TeV gamma-
rays and only one has been detected in GeV gamma-rays (Farnier,
Walter & Leyder 2011; Reitberger et al. 2015). Wind-blown bub-
bles from high-mass stellar clusters and/or SNRs have long been
proposed as sites of particle acceleration, through diffusive shock
acceleration, up to PeV (10'3 eV) energies (e.g. Casse & Paul 1980)
and recently, the first superbubble has been detected in TeV gamma-
rays (H.E.S.S. Collaboration et al. 2015a). Pedaletti, de Ofia Wil-
helmi & Torres (2014) show that regions of high stellar activity
within the central Galactic region, traced by dust emission and CO,
could be correlated with TeV emission.

In summary, dense molecular gas that is both coincident with
and/or adjacent to TeV emission can be very important in iden-
tifying the TeV emission mechanism and the location of particle
accelerators. The transitions included in this study can not only
help understand the density profile of molecular clouds, but can
also identify regions of unusual astrophysical conditions such as
outflows (e.g. the H,O maser), shocked gas (e.g. the H,O maser
and NHj transitions) and ionized gas (e.g. H69«). The kinematic
velocity and linewidth of molecular transitions can provide infor-
mation about the distance of and gas dynamics towards Galactic
TeV gamma-ray sources.

Previously, the '>CO(1-0) transition has been used to identify
potential molecular cloud counterparts to unidentified TeV emis-
sion (e.g. Aharonian et al. 2008c; Abramowski et al. 2011b). For
example, by making a thorough comparison of two Galactic plane
data sets, the HESS TeV gamma-rays and the Nanten CO(1-0)
emission, it was shown that the CO clouds in the W28 region
have a remarkable spatial coincidence with the TeV gamma-rays
(Aharonian et al. 2008b). A subsequent comparative study towards
the SNR RX J1713.7—3946 revealed that the combination of the
atomic and molecular gas, i.e. the total interstellar hydrogen, shows
a good spatial correspondence, where the Nanten CO J = 1-0
distribution and the ATCA H1 21 cm distribution were used to
derive the gas column density (Fukui et al. 2012). This correspon-
dence is interpreted as indication for a hadronic component to the
gamma-rays from RX J1713.7—3946 arising from the dense in-
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terstellar medium (ISM) clumps (Zirakashvili & Aharonian 2010;
Inoue et al. 2012). The interpretation is supported by the theoretical
works on the VHE gamma-rays that incorporates the highly inhomo-
geneous distribution of the ISM (Inoue & Inutsuka 2012; Gabici &
Aharonian 2014). Further observational identification of the molec-
ular and atomic gas towards the VHE sources is presented by Fukuda
et al. (2014) for HESS J1731—-347, and Hayakawa et al. (2012) for
HESS J1745—303. These observational and theoretical results indi-
cate the important role of the ISM whose density is in a wide range
from 10 to 103 cm ™ in producing the TeV gamma-rays, and warrant
further systematic efforts to identify the interstellar gas towards the
Galactic HESS sources.

While 12CO is abundant, the '>CO(1-0) transition has a critical
density of ~1000 cm™ that contributes to the transition becom-
ing optically thick towards molecular cloud cores. In addition, CO
rapidly depletes from the gas phase towards the centre of cloud
cores (e.g. see Bergin et al. 2002; Tafalla et al. 2002). Both of these
aspects can hamper the understanding of molecular cloud density
profiles and internal dynamics if the '>2CO(1-0) transition is used
on its own. Due to the coarse angular resolution of current TeV
observations (~0°1), the Dame CO survey has been used to trace
large-scale molecular content. As the angular and energy resolutions
of TeV gamma-ray observations improve with the new generation of
ground-based TeV telescope systems such as Cherenkov Telescope
Array (CTA) (angular resolution 0°02—0:2), a better understanding
of the density profiles of molecular clouds, using transitions that
trace a wide range of temperatures and densities, will be needed to
explore cosmic ray (CR) transport scenarios. Surveys such as Mo-
pra CO (angular resolution ~0°01; Braiding et al. 2015), Nanten2
(angular resolution ~0203) and H,O Southern Galactic Plane Sur-
vey (HOPS) (angular resolution ~0203; Purcell et al. 2012), used
here, will be invaluable for this cause.

Ideal tracers of dense gases such as NH3, CS or HC;N are widely
used to trace molecular cloud cores due to their lower abundance
(a factor of ~107> the CO abundance) and higher effective critical
densities ~10* cm™3. This gives them much lower optical depths
in dense gas and so allows for a more accurate calculation of gas
density and mass towards dense (~10*> cm~3) molecular cloud
cores. In addition, NH; depletes less rapidly than CO from the gas
phase in cold molecular cloud cores (Tafalla et al. 2002) and so is
often used to trace cold (<30 K) gas that is often seen in infrared
dark clouds (IRDCs). NH; inversion emission may be seen with
collisional masers such as the H,O maser traced in this study that is
thought to trace protostellar jet termination shocks in early stages of
star formation. The CS(1-0) and HC;N transitions are used to trace
warmer dense cores where star formation may already be switched
on. These warmer cores are sometimes seen within Hu regions,
traced by radio recombination lines such as the H69« transition,
where atomic hydrogen has been ionized by young, high-mass stars.

The NH3 molecule is a pyramidal symmetric top with inversion
motion and metastable levels, some of which display readily observ-
able hyperfine structure. The NH3 (1,1) transition displays promi-
nent satellite lines, which along with NHj (2,2) allow the optical
depth, and hence gas temperature and mass, to be strongly con-
strained (e.g. Ho & Townes 1983; Walmsley & Ungerechts 1983).
NHj has two distinct species, distinguished by the relative nuclear
spins of the hydrogen atoms, ortho NH3 (K = 3n) in which all three
spins are aligned and para NH3 (K # 3n) in which the three spins
are not aligned. The rotational temperature within the same spin
species reflects the kinetic temperature under local thermodynamic
equilibrium (LTE) conditions (Maret et al. 2009). Since the transfer
processes between ortho and para NHj are almost thermoneutral,
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conversion between the two spin species is very slow with respect
to the reactive pathways (which are exothermic). The time-scale of
conversion processes between spin species is considered to be of
the order of 10° yr in the gas phase (Cheung et al. 1969). As a result,
the ‘spin temperature’ (or the rotational temperature between ortho
and para species) is not considered to reflect the kinetic temperature
of NHj;, but instead reflect formation conditions of the NHj.

The ortho-to-para abundance ratio (OPR) for NH; is widely ex-
pected to be the statistical equilibrium value of 1.0 when the NH;
molecules are formed in gas-phase or surface grain reactions (e.g.
Umemoto et al. 1999). However, modelling by Faure et al. (2013)
suggests that, in gas-phase reactions, the OPR can reasonably be
expected to be 0.5-1.0, and an OPR < 1 reflects production from
para-enriched H, gas. Faure et al. (2013) have modelled the for-
mation of ortho and para ammonia and have suggested that ortho
ammonia is formed preferentially over para ammonia when the NH3
is formed or condensed on a cold surface (<30 K) such as water or
ice. In addition, because the lowest energy level of the para species
of NHj is 23 K higher than the lowest energy level of the ortho
species, the para species require more energy for desorption than
ortho species (Umemoto et al. 1999). Both of these aspects would
enhance the OPR for NH; released from grain surfaces into the gas
phase by shocks over the OPR of NH; produced in the gas phase.
The observational study of Umemoto et al. (1999, amongst others)
suggests that an enhanced OPR (OPR > 1) along with an enhanced
NH; abundance can indicate a previous shock that has released NH;
formed on dust grains into the gas phase.

This work provides a first systematic look at the dense gas
(n >10* cm™?) traced by HOPS (Purcell et al. 2012) and fur-
ther dedicated observations with the Mopra radio telescope to-
wards Galactic TeV gamma-ray emission seen by HESS. The large
(8 GHz) bandwidth of the Mopra spectrometer (MOPS) allows for
the simultaneous observation of many molecular transitions. Mul-
tiple inversion—rotation transitions of NHj3 are included that allow
us to identify molecular cloud cores displaying non-LTE condi-
tions, which may indicate shocked gas. The velocity resolution
(~0.4 km s~! at 22 GHz; Urquhart et al. 2010) of MOPS at these
wavelengths provides an opportunity to search for asymmetric line
profiles of molecular transitions, which can indicate disruption and
shocks within cloud cores. These Mopra observations are able to
provide information about the densest parts of the interacting inter-
stellar gas and will allow us to gain an insight in the CR penetration
in the inner part of the cloud cores and the gamma-ray production.

2 OBSERVATIONS AND DATA REDUCTION

Our study uses published HESS results up to 2015 March (see
Table 1 for specific references). HESS detects TeV gamma-rays
above an energy threshold of ~100 GeV and up to ~100 TeV with
a typical energy resolution of 15 per cent per photon and an angular
resolution of ~0?1 per event (Aharonian et al. 2006c). The HESS
field of view is 5° in diameter with a point source sensitivity of
~2.0 x 1073 ergem2 s~ ! at 1 TeV (25 h obs).

Molecular line data were taken from HOPS (Walsh et al. 2011)
data and reduced using the ATNF packages LIVEDATA, GRIDZILLA,
AsAP and MIRIAD (see http://www.atnf.csiro.au/computing/software/
for information on these packages). HOPS has mapped a 100 square
degree strip of the Galactic plane (30° > [ > —70°, |b| < (°5) at
12 mm wavelengths using the Mopra radio telescope. The telescope
main beam size (full width at half-maximum, FWHM) is ~2 arcmin
at a wavelength of 12 mm (Urquhart et al. 2010). Mopra is a 22 m
single-dish radio telescope located 450 km north-west of Sydney,
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near Coonabarabran, NSW, Australia. HOPS observations made
use of the MOPS in on-the-fly mapping mode. The zoom mode
of MOPS allows simultaneous observations from up to 16 spectral
windows, where each window is 137.5 MHz wide and contains 4096
channels. HOPS targets water masers, thermal molecular emission
and radio recombination lines. Overlap of HOPS with the Galactic
sky seen by HESS can be seen in Fig. 1. The Central Molecular Zone
(CMZ) is not discussed in this study, and a study of this region will
be detailed in a future paper. Further observation details of HOPS
can be found described in Walsh et al. (2011). To derive kinematic
distances from the local standard of rest (LSR) kinematic velocity,
the Galactic rotation curve derived by Brand & Blitz (1993) was
used unless otherwise indicated.

We also carried out dedicated observations with the Mopra radio
telescope between 2011 February and 2015 January. These obser-
vations employed MOPS in zoom mode and utilized the same zoom
bands and central frequency as HOPS. Five sites of deep ON/OFF
pointing towards HESS J1801—233 and HESS J1745—303 were un-
dertaken using modified zoom bands to include the NH; (4,4) and
(5,5) transitions. Deep ON/OFF pointing is where one beam-sized
‘ON’ region is observed, and calibrated using a single, beam-sized
‘OFF region and are used in this study to provide extra sensitiv-
ity over mapping data. The FWHM of the Mopra beam within the
12 mm band varies between 1.7 arcmin at the highest observed
frequency in these data (27.5 GHz) and 2.4 arcmin at the lowest
observed frequency (19.5 GHz; Urquhart et al. 2010). The mapping
data, as with HOPS, use MOPS in on-the-fly mapping mode with
two scanning directions, Galactic longitude and latitude, in order
to reduce scanning artefacts and noise. Each 025 x 025 map took
approximately 90 min for each pass. Deep ON/OFF pointings were
undertaken for 60 min in selected regions where extra sensitivity
was required. The mapping regions of our dedicated observations
with HOPS-equivalent exposure have a mean T, of 0.2 K per
channel. Mapping regions with deeper coverage had four times the
exposure, and so achieved a T;,s ~0.1 K per channel. Position-
switched deep ON/OFF observations achieved a T}, of >~0.02 K
per channel.

We applied the methods of Ungerechts, Winnewisser & Walmsley
(1986) to estimate the NH3 column density (Nnn,), the kinetic
temperature (Tx) and the H, density (ny,) of the molecular clumps
from the detected emission lines NH3 (/, K), J = K = 1, 2. The
masses of molecular clumps are presented and discussed for six
unidentified sources in detail in Section 4. For clumps where all
data are from HOPS, the NH; gas parameters are presented in
Purcell et al. (2012). Since our study is particularly interested in
those unidentified TeV sources towards star-forming regions, the
TeV sources that are towards molecular clumps displaying H,O
maser emission and/or H69« emission are listed in Table 2.

2.1 TeV/molecular clump overlap

Dense molecular clouds were included based on their emission in
the NHj (1,1) transition. The NH; data were smoothed over five
velocity channels (~2.0 km s~ 1), improving the integrated S/N by a
factor of ~~/5. We have classified molecular clouds as significant if
their peak emissionis > 30, where 0 = T/ /5. Molecular clumps
were identified as being towards the TeV emission if the clump
centroid position fell within a 30 radius from the TeV centroid,
and adjacent to the TeV emission if the clump centroid position fell
between a 30 and So radius range from the TeV centroid, where o is
the intrinsic rms of the TeV sources quoted in publication (relevant
publications are noted in Table 1).
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The NH;3 (1,1) transition and five further specific molecular
transitions were searched for in our study towards the molecular
clouds detected with NH; (1,1) emission. The transitions were cho-
sen based on their ability to trace star-forming regions at various

P. de Wilt et al.

Table 1. TeV sources covered by Mopra 12 mm observations in our study. The 12 mm observations include data from HOPS (Walsh
et al. 2011) as well as additional observations undertaken specifically for our study. The HESS TeV source name and centroid position
(taken from given references) as well as some alternative names and whether NH3 (1,1) emission is detected towards, or adjacent to, the
source is indicated. Sources highlighted in bold font are discussed in detail in this paper.

HESS name Alternative name ) b NH3 (1,1) NH; (1,1) TeV position/size
towards adjacent reference
HESS J1023—-575 Westerlund 2 284.22 —0.40 - - 1
HESS J1119—614 292.10 —0.49 - - 24
HESS J1303—631 304.24 —0.36 Vi - 2
HESS J1418—609 Kookaburra(Rabbit) 313.25 0.15 - Vi 3
HESS J1420—607 Kookaburra(PWN) 313.56 0.27 NG Vi 3
HESS J1427—608 314.41 —0.14 Vv Vi 4
HESS J1457—593 G318.2+0.1 318.36 —043 - Vi 5
HESS J1503—582 319.62 0.29 - - 6
HESS J1614—518 331.52 —0.58 - Vi 4
HESS J1616—508 332.39 —0.14 Vi Vi 7
HESS J1626—490 334.77 0.05 NG Vi 4
HESS J1632—478 336.38 0.19 Vi v 4
HESS J1634—472 337.11 0.22 Vv Vi 4
HESS J1640—465 338.32 —0.02 - v 7
HESS J1641-463 338.52 0.09 v - 2
HESS J1646—458 Westerlund 1 339.55 —0.35 Vv v 8
HESS J1702—420 344.30 —0.18 Vi Vi 4
HESS J1708—410 345.68 —047 - Vi 4
HESS J1713—397 RX J1713.7—3946 347.34 —0.47 Vv Vi 9
HESS J1713—381 CTB 37B 348.65 0.38 - - 7
HESS J1714—385 CTB 37A 348.39 0.11 - - 10
HESS J1718—385 348.83 —0.49 - - 1
HESS J1729-345 353.44 —0.13 v - 12
HESS J1731-347 353.54 —-0.67 - v 12
HESS J1741—-302 358.4 0.19 - - 13
HESS J1745-303 358.71 —0.64 J J 7
HESS J1800—240A 6.14 —0.63 v - 14
HESS J1800—240B 5.9 —0.37 v - 14
HESS J1800—240C 571 —0.06 - v 14
HESS J1801—233 w28 6.66 —0.27 Vi - 14
HESS J1804—216 8.4 —0.03 Vv 7
HESS J1808—204 9.96 —0.25 - - 2
HESS J1809—193 11.18 —0.09 v v 11
HESS J1813—178 12.81 —0.03 - v 7
HESS J1818—154 SNR G15.4+40.1 15.41 0.17 Vi - 15
HESS J1825—137 17.71 -0.7 - v 7
HESS J1828—099 21.49 0.38 - - 2
HESS J1831—098 21.85 —0.11 - - 16
HESS J1832—093 22.48 —0.16 Vi - 17
HESS J1832—085 23.21 0.29 - - ks
HESS J1834—087 23.24 —031 v - 7
HESS J1837—069 25.18 —0.12 v v 7
HESS J1841—055 26.8 -02 v v 4
HESS J1843-033 29.3 0.51 v v 18
HESS J1844—030 29.41 0.09 - - 24
HESS J1846—029 29.7 —0.24 - - 19
HESS J1848—018 31.0 —0.16 Vi - 20
HESS J1858+020 35.58 —0.58 - - 4
HESS J1912+101 44.39 —0.07 Vi - 21

Notes. ' Abramowski et al. (201 1a); 2Aharonian et al. (2005); 3 Aharonian et al. (2006b); * Aharonian et al. (2008a); SHofverberg (2010);
6Renaud, Goret & Chaves (2008); 7 Aharonian et al. (2006d); 8 Abramowski et al. (2012); ® Aharonian et al. (2006a); ' Aharonian et al.
(2008e); ! Aharonian et al. (2007); 2 Abramowski et al. (2011b); '3 Tibolla et al. (2008); '* Aharonian et al. (2008b); '>Hofverberg et al.
(2011); '0Sheidaei, Djannati-Atai & Gast (2011); "HESS Collaboration et al. (2015b); '®Hoppe (2008); !*Djannati-Atai et al. (2008);
20Chaves et al. (2008); 2! Aharonian et al. (2008d); 22 Abramowski et al. (2014); ZRowell et al. (2012); >*Deil et al. (2015).
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evolutionary phases and broad-line gas within dense cloud cores.
Three inversion—rotation transitions of NH;, NH;3 (J, K): /=K =1,
2, 3, were chosen in order to estimate gas temperature and density
of molecular clumps as well as to identify regions of broad-line
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Figure 1. TeV gamma-ray significance image taken from Deil et al. (2015) and overlaid with regions of HOPS 12 mm coverage displayed using cyan boxes
and our additional, dedicated 12 mm observations displayed using dashed green boxes.

Table 2. All molecular detections from molecular clumps with NH3 (1,1) emission towards Galactic TeV sources. This table shows an extract from the full
table, which is available in the online appendix. Galactic coordinates of NH3(1,1) emission, with kinematic distance solutions obtained using the rotation curve

of Brand & Blitz (1993), and coincident molecular emission lines.

TeV source NH3 NH3 NH3 (1,1) kinematic distance NH3 NH3 HC3N H,O H69«
(1,1) (1,1) VLSR near far (2,2) (3,3) (3-2) (6-5)
! b (kms™h (kpe) (kpc)
HESS J1729-345 353.3 —-0.1 —16.1 3.8 10.3 - - - - -
HESS J1731-347 353.4 —-03 —18.7 43 9.8 N N N - -
HESS J1745-303 358.4 —-0.5 6.5 - - v - - VA -
358.5 —-04 —-3.7 2.6 10.5 N v - Vv -
358.6 —-0.8 2.7 19.5 - Va - Vv - -
358.6 —-04 —-6.7 6.3 - - - - - -
358.8 —-04 —29.7 - - v v Vv - -
358.8 —-0.5 —54.0 - - Vv N Vv - -
HESS J1800—240C 5.6 —-0.1 —-27.2 - - v Vv Vv VA -
5.8 —-0.2 12.0 35 10.7 - - - - -
HESS J1800—240B 5.9 —-04 7.7 2.3 11.9 Va Vv J N J
59 —-0.3 9.0 2.6 11.5 Vv - Vv - -
HESS J1800—240A 6.6 —-0.3 6.0 1.6 12.6 Va Vv - - -
6.8 —-03 20.1 4.7 9.3 Vv - N Vv -
HESS J1804—-216 8.1 0.2 18.0 3.7 10.5 Va Vv - - Vv
8.3 0.2 17.1 35 10.7 Vv - - - -
8.4 —-0.3 36.7 6.7 - v Vv J - -
8.7 —-04 36.7 6.4 - Vv N Vv Vv -

emission, and unusual gas dynamics. The H,O maser transition at
12 mm was chosen to identify regions of ongoing star formation that
may not show up in IR observations, and the radio recombination
line H69« was chosen to identify regions of ionized gas where high-
mass stars have been recently formed. The cyanopolyyne transition
HC;N(3-2) was chosen as it, and other cyanopolyyne transitions,
is thought to trace early stages of core evolution while NH; tends
to become more abundant at later stages (Suzuki et al. 1992). The
detections of these six molecular transitions are summarized in
Table 2.

3 RESULTS OVERVIEW

Out of the 49 TeV sources included in our study, NH3 (1,1) emission
was detected towards or adjacent to 38 of them (see Table 1 for a full
list). Between one and nine molecular clumps are seen towards or
adjacent to each TeV source. Around half of the molecular clumps
detected in NH; (1,1) emission display NH; (2,2) emission and
around one third display NHj3 (3,3) emission. HC3N (3-2) emission
is detected in around one third of molecular clumps, as is the H,O
maser transition, while H69« emission is seen towards less than one
fifth of molecular cores. These results are summarized in Table 2.
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3.1 NH; linewidths

The FWHM of the NH; main line is often used as a measure of the
total energy (thermal plus non-thermal) associated with a molecular
clump. Broader lines are expected from regions with higher tem-
peratures or additional dynamics (due to turbulence, infall, outflow
or tidal flow). The purely Maxwell-Boltzmann thermal linewidth
FWHM A vy, expected from a gas at temperature 7 is given by

8In(2)kT
Aum=,/Lkms4, )
MINH;

where k is Boltzmann’s constant and mygy, is the mass of the NH3
molecule. For a temperature of 15 K, as might be expected in
typically cold, dense NHj; cores, a thermal linewidth of 0.20 km s~!
is obtained (Ho & Townes 1983). The line FWHM of each core was
estimated from a Gaussian fit to the main peak of the emission with
additional Gaussians to fit each of the four satellite lines, which are
generally resolved in the (1,1) transition.

The FWHM for all molecular clumps identified in our study is
noticeably wider than that expected from purely thermal broaden-
ing, suggesting additional non-thermal or kinetic energy that dom-
inates over broadening from the instrumental response, which in
zoom mode at 12 mm provides a velocity resolution of ~0.4 km s~!
(Urquhart et al. 2010). Typical linewidth FWHMs observed for NH;
emission in our study are from 1 to 2 km s~!, but in a few cases,
very broad linewidths (>10 km s~!) are observed. For NH3 (1,1)
emission with very broad linewidths, the satellite lines are blended
with the main line that makes fitting the five Gaussian components
non-trivial. For these sources, the NH;3 (2,2) linewidth (assumed
to be unaffected by satellite line blending) was used as an upper
limit to the width of the NH; (1,1) main line, and temperature and
density calculated based on this fit. The TeV sources towards which
these very broad linewidths are found, HESS J1801—233 (the TeV
source to the NE of the SNR W28 towards an SNR/molecular cloud
interaction region; Nicholas et al. 2011) and HESS J1745-303
(Aharonian et al. 2008c), are both thought to be produced hadron-
ically through interaction of accelerated protons and dense gas.
The broad linewidths observed towards these sources, together
with coincident broad SiO(1-0) emission [which can be seen in
Nicholas et al. (2012) for HESS J1801—233 and in an upcoming
paper for HESS J1745—303], indicates the previous passage of a
shock through this gas.

3.2 Ortho-to-para NH; abundance ratios

Para NH; (1,1) and NH;3 (2,2) detections [as well as ortho NH3
(3,3) detections when available] and the LTE methods summarized
in Ungerechts et al. (1986) were used to determine the rotational
temperatures of all molecular clumps towards TeV sources in the
HOPS data set. Towards HESS J1745—303 and HESS J1801—-233
where NHj3 (3,3) detections were made, it was noticed when cal-
culating rotational temperatures that the optical depths did not de-
crease with increasing J (as would be expected) and the NH; (3,3)
brightness temperature > NHj; (1,1) brightness temperature that is
shown in Figs 2 and 9 as well as the spectra in Figs 3, 5, 7, 10 and 12.
Subsequently, in this work, where NHj (3,3) brightness tempera-
ture > NHj (1,1) brightness temperature, the NH; (J, K), J =K > 2
emission is not expected to represent the same excitation tempera-
ture as the NHj (1,1) transition and so it is assumed that the NH3
(J,K)J=K=23,4,5, 6 emission is optically thin. The molecular
clumps towards HESS J1745—303 and HESS J1801—233 with NH;
(3,3) brightness temperature > NH; (1,1) brightness temperature
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Figure 2. Animage of NHj3 (3,3) peak pixel-to-NH3 (1,1) peak pixel emis-
sion towards TeV source HESS J1745—303. The image has been produced
to only show the ratio in regions of significant NH3 (3,3) emission, although
some scanning artefacts from noisy pixels are still visible towards the Galac-
tic east and south edges of the mapping region. This image is overlaid with
contours of TeV emission (black) and the regions towards which the deep
pointing spectra were taken (small black circles). SNRs are indicated as
large, solid blue circles, 1720 MHz OH masers are indicated with black xs
and pulsars are indicated as magenta diamonds.

-100 -80 -60 -40 20 0 20 40
VLSR (km/s)

Figure3. NH3 (J,K)J=K=1,2,...,6spectra from the region marked as
region 1 towards HESS J1745—303 in Fig. 2. The peak brightness temper-
ature of the NH3 (3,3) emission is greater than that of the other transitions.

were found to have extended emission in all four of the metastable
ammonia transitions considered in the HOPS observations [NHj3
J, K), J =K =1, 2, 3, 6]. The molecular clouds towards both
HESS J1745—303 and HESS J1801—233 exist close to SNRs that
are interacting with molecular clouds, evident by 1720 MHz OH
masers. In addition, 7 mm observations of the regions displaying
NH; (3,3)-to-NH; (1,1) brightness temperature ratios > 1 revealed
extended SiO (1-0) emission that matches the morphology of the
NH; emission.

Upper-state column densities for each transition were calculated
using the LTE analysis summarized by Ungerechts et al. (1986).
These values were divided by the total degeneracy (angular mo-
mentum degeneracy, g, = 2J + 1 as well as spin and K degeneracy)
and used to plot rotation diagrams. Rotation diagrams shown in
Figs 4, 6, 8, 11 and 13 include upper-state column densities of each
observed transition towards each region of extended NH; emission
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Figure 4. Rotation diagram for region 1 of HESS J1745—303 (shown in
Fig. 2) where Ny, g, and E, are the column density, the statistical weight
and the energy for the upper levels of the transitions NH3 (/, K) J=K =1,
2, ..., 6. Rotational temperatures, Tyt = l/slope, have been determined
for three groups of transitions, and it can be seen, since the slopes are very
similar, that the rotational temperature is similar for the ortho NH3 (3,3) and
(6,6) transitions and the para NH3 (4,4) and (5,5) for which the rotational
temperature given here was fitted along with the OPR adjusted ortho column
densities (shown as open cyan circles). Here an OPR of 2.0 was estimated.
The best-fitting OPR is 1.5 £ 0.5.
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Figure5. NH3 (J,K)J=K=1,2,..., 6 spectrafrom the region marked as
region 2 towards HESS J1745—303 in Fig. 2. The peak brightness temper-
ature of the NH3 (3,3) emission is greater than that of the other transitions.

where NHj (3,3) brightness temperature > NHj (1,1) brightness
temperature. The rotation temperature of para NH; was estimated
separately for the NH; (J, K) J = K = 1, 2 transitions and the NHj3
(J, K) J = K =4, 5 transitions. The rotational temperature of ortho
NH; was estimated using the NH; (J, K) J = K = 3, 6 transitions,
and it is assumed that T3¢ = Tys.

ON/OFF deep pointing observations were taken at three po-
sitions towards HESS J1745—303, and two positions towards
HESS J1801—233. These regions indicated in Fig. 2, which were
chosen due to their high NHj3 (3,3)-to-(1,1) brightness tempera-
ture ratios, and Fig. 9, which were chosen due to their positions
immediately post-shock and pre-shock where the shock position
is traced by 1720 MHz OH masers. The method of Umemoto
et al. (1999) was used to estimate the ortho-to-para NH; abundance
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Figure 6. As in Fig. 4, for region 2 of HESS J1745—303 (shown in Fig. 2).
For this region, an OPR of 2.0 was estimated. The best-fitting OPR is 1.8 £
0.6, indicating an OPR enhancement. This region lies towards the centroid
of TeV gamma-ray emission.
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Figure 7. NHz (/, K)J=K =1, 2, ..., 6 spectra from the region marked
as region 3 towards HESS J1745—303 in Fig. 2. The brightness temperature
of the NH3 (3,3) emission is greater than that of the other transitions.
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Figure 8. Asin Fig. 4, for region 3 of HESS J1745—303 (shown in Fig. 2).
For this region, an OPR of 1.5 was estimated. The best-fitting OPR is 1 .7*_'8;2.
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Figure 9. Animage of NH3 (3,3) peak pixel-to-NHj (1,1) peak pixel emis-
sion towards TeV source HESS J1801—233. This image is overlaid with
contours of TeV emission (black) and the regions towards which the deep
pointing spectra were taken (blue circles). 1720 MHz OH masers are indi-
cated with black xs.
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Figure 10. NH3 (J,K)J=K=1,2,...,6spectra from the region marked as
region 1, towards HESS J1801—233, in Fig. 9. This region is post-shock as
the 1720 MHz OH masers effectively mark the current position immediately
post-shock, and the SNR is expanding with the shock moving towards
region 2. These spectral lines all display broad (>6 km s~!) linewidths,
and this region also displays extended SiO(1-0) emission. The brightness
temperature of the NH3 (3,3) emission is greater than that of the other
transitions.

ratio. Figs 4, 6, 8, 11 and 13 display a straight line fit to the derived
NH; (4,4) and (5,5) column densities, where 1/slope = Tiy. This
rotational temperature was compared to the Ty fit for the ortho
NH; (3,3) and (6,6), and in many cases the lines fitting each pair
of column densities are almost parallel (indicating an equivalent
Trot). Ortho-to-para NH; abundance ratios were estimated and used
to produce reduced ortho NH; (3,3) and (6,6) column densities
(ROCDs) according to

ROCD = NorthO/OPResh 2

where Ny 1S the upper-state ortho NH3 column density for each
transition and OPR.y is the estimated NHj; ortho-to-para abundance
ratio. These ‘reduced’ ortho NH; column densities were then op-
timised with least-squares fitting with a straight line fit to all NH;
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Figure 11. AsinFig. 4, forregion 1 of HESS J1801—233 (shown in Fig. 9).
For this region, an OPR of 1.5 was estimated. The best-fitting OPR is 1.5 &
0.5. This region is the post-shocked region.
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Figure 12. NH3 (J,K)J=K=1,2, ..., 6 spectra from the region marked
as region 2, towards HESS J1801—233, in Fig. 9. This region is pre-shock as
the 1720 MHz OH masers effectively mark the current position immediately
post-shock, and the SNR is expanding with the shock moving towards region
2. The brightness temperature of the NH3 (3,3) emission is slightly less than
that of the NH3 (1,1) emission and slightly greater than that of the NH3 (2,2)
emission.

J,K)J=K=23,4,5, 6 column densities. The OPR that gives the
best fit is given in Table 3.

It can be seen in Table 3 that for all three regions investigated
towards HESS J1745—303, an OPR > 1 is indicated (see Table 3).
We believe that an OPR > 1 indicates the previous passage of a shock
through a gas cloud (see Section 1). The regions observed towards
HESS J1745—303 with an OPR >1 lie outside the boundary of
the SNRs in the region indicating that another shock is responsible
for the enhancement of ortho NHj3 over para NH;. Several radio
continuum point sources, centred on a molecular CO(1-0) ring in
the region, may be remnants of an OB association responsible for a
superbubble (Uchida et al. 1992).

ON-OFF deep pointing observations were taken at two positions
towards HESS J1801—233. These regions are indicated in Fig. 9
and were chosen due to their positions immediately post-shock and
pre-shock where the shock position is traced by 1720 MHz OH
masers.
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Figure 13. AsinFig. 4, for region 2 of HESS J1801—233 (shown in Fig. 9).
For this region, an OPR of 1.5 was estimated. A lower limit OPR has been
found (due to upper limits of NH3 (4,4) and (5,5) emission). This method
indicates an OPR of >2.0. As can be seen in this image however, the NH3
(3,3) and upper limit NH3 (4,4) column densities, with an OPR of 1.0, lie on
the rotational temperature fit to the NH3 (1,1) and (2,2) emission (magenta
line) indicating that the gas traced by these transitions may have an OPR of
1.0 and have a rotational temperature of that given by the NH3 (1,1) and (2,2)
transitions. The NH3 (5,5) and (6,6) emission would then be tracing higher
temperature gas, and the derived OPR would not reflect the conditions of
this gas. This region is the pre-shocked region of molecular gas associated
with HESS J1801—233.

For HESS J1801—233, the method used here cannot determine
whether the OPR is enhanced in the regions indicated in Fig. 9.
Region 1 is immediately post-shock and region 2 is immediately
pre-shock where the shock position is traced by 1720 MHz OH
masers. The best fit indicates that the OPR is enhanced in both
regions that is consistent with a previous study (Maxted et al. 2016)
using NH; (J, K), /=K =1, 2, 3, 4, 6 to estimate the OPR in region
1. For region 2 (indicated in Fig. 9), the rotational temperature for
NH; (1,1) and (2,2) fits to the column densities of transitions up
to the NH3 (4,4) upper limit (as can be seen in Fig. 13), which
may indicate that the higher J/ NHj3 (5,5) and (6,6) transitions are
tracing a higher temperature component of the gas. If this were
the case, the lower limit OPR for this region would not reflect the
conditions of the gas. An enhanced OPR would not be expected in
this region. In region 1 (indicated in Fig. 9), the post-shocked region,

2101
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the determined OPR is consistent with 1, within errors; however, an
enhanced OPR could be expected in this region.

3.3 TeV emission from PWNe

Pulsar wind nebulae or old relic PWNe are thought to be respon-
sible for the TeV emission from many of the unidentified Galac-
tic gamma-ray sources (Chang, Konopelko & Cui 2008; Mattana
et al. 2009). The population of likely TeV PWNe is thought to in-
clude 27 sources (de Ofia-Wilhelmi et al. 2013), although many of
these sources do not have associated, observed pulsars. Gallant et al.
(2008) have identified seven TeV sources as confirmed PWNe. We
have added HESS J1303—631 to this list as it has been since con-
firmed as a PWN (H.E.S.S. Collaboration et al. 2012), and meets
the same requirements for confirmed PWNe proposed by Gallant
et al. (2008).

In order to assess whether TeV sources in our study meet ener-
getics constraints provided by confirmed PWNe, we have assumed
that the TeV emission is at the same distance as the dense molecular
gas traced by NHj (1,1) emission and scaled the TeV luminosity
of each source accordingly. We then calculated the range of spin-
down powers a pulsar producing this emission could have if the TeV
emission was between 0.01 per cent and 7 per cent of the pulsar
spin-down power [as is the case for the population of seven con-
firmed PWN in Gallant et al. (2008)]. In Fig. 14, the range of TeV
luminosities for all TeV sources included in this study, along with
the range of spin-down powers these luminosities would translate
to, with minimum and maximum TeV efficiencies of 0.001 per cent
and 7 per cent, respectively. It can be seen that, even with minimum
TeV efficiency, the range of inferred spin-down powers is between
103 and 10% erg s~!, a range consistent with the population of
pulsars likely to have an association with TeV emission identified
by de Ofia-Wilhelmi et al. (2013). Therefore, all of the TeV sources
included in this study of dense gas detected by NHj3 (1,1) adjacent to
TeV emission meet energetics requirements to be Galactic PWNe.

In addition, we believe that the range of inferred spin-down pow-
ers in Fig. 14 indicates that there could be a population of older TeV
emitting PWNe, in the population of TeV sources included in this
study, with a higher TeV efficiency (i.e. close to the maximum cur-
rent TeV efficiency seen of 7 per cent, or even greater), which do not
yet have associated, detected pulsars considered likely to have an
association with TeV emission identified by de Ofia-Wilhelmi et al.
(2013). This population of TeV emitting PWNe is likely to become

Table 3. The T given for NH3 (3,3)-to-(6,6) (reduced ortho) = 1/slope of the line fit to the column densities for
regions defined in Figs 2 and 9 (adjusted according to the estimated NH3 OPR) of the transitions for NHs (J, K)
J=K=3,4,5,6. The OPR given is that with the best fit to the NH3 (/, K) J/ = K = 3, 4, 5, 6 column densities.
The * indicates a region where the apparent OPR fitted appears to be due to an incorrect division of transitions
into temperature components rather than an enhanced OPR. Further details are outlined in the caption of Fig. 13.

TeV source Trot Trot Trot Trot

and region para ortho para (3,3)-(6,6) OPR
(1,1),(2,2) (3,3),(6,6) (4,4),(5,5) (reduced ortho) best fit

(K) (K) (K) (K)

HESS J1745-303

region 1 68 222 239 224 1.5+£03

region 2 64 256 232 234 1.8+0.6

region 3 91 247 181 239 1.7'_"8:;2

HESS J1801—-233

region 1 108 285 360 291 1.5£05

region 2 143 259 - - >2.0%
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Figure 14. Spin-down power versus age for pulsars from the ATNF Pulsar
Catalogue (Manchester et al. 2005) plotted with green dots. The population
of pulsars deemed as likely TeV PWNe by de Ofia-Wilhelmi et al. (2013)
have been overplotted with black dots. It can be seen that the minimum
spin-down power for those pulsars likely associated with TeV emission is
~103 erg s~!. The TeV luminosity range (scaled according to molecular
clump distance) is indicated by black, solid lines. The range of spin-down
powers for minimum apparent TeV efficiencies of 0.001 per cent and max-
imum apparent TeV efficiencies of 7 per cent for adjacent clumps’ near
and far distances are indicated by blue dashed and red dot—dashed lines,
respectively.

more apparent with the increasing sensitivity of TeV gamma-ray
observations.

This method has not allowed for discrimination based on ener-
getics requirements for those sources that are currently unidentified,
which may be PWNe. Fig. 14 demonstrates this as TeV luminosi-
ties derived for all molecular cores detected in our study fall within
the expected range for TeV emitting PWNe. This study is useful
for more detailed studies for individual TeV sources that compare
the morphology of dense gas with the TeV emission (e.g. Voisin
et al. 2016). In the case of PWNe, which are produced leptonically
through IC emission, the TeV emission often exhibits asymmetric
morphology, and is expected to anti-correlate with molecular gas.
This asymmetry can be explained by an inhomogeneous distribu-
tion of interstellar gas around pulsars that strongly influences their
development (e.g. Blondin et al. 2001). This study can be used to
search for dense gas anti-correlated with asymmetric morphology
of TeV emission to identify relic PWNe. In addition, these relic
PWNe would be less likely to display 2—-10 keV X-ray emission
than the younger PWNe, in accordance with the ratio of gamma-ray
to X-ray flux identified by Mattana et al. (2009) to increase with
PWN age.

4 DISCUSSION OF SIX PROMINENT
UNIDENTIFIED TEV SOURCES

Six TeV sources that have not been unambiguously connected to
any counterpart at other wavelengths are discussed in detail here.
These sources were chosen for their coincidence with star-forming
regions as evident by IR emission, H,O masers and/or H69« emis-
sion or, as for HESS J1745—303, an anomalous NH3 ortho-to-para
brightness temperature ratio. Images of the peak pixel brightness
temperature between velocities of —200 and 200 km s~! of various
molecular transitions along with spectra towards selected molecular
gas clumps and IR features are displayed in Figs 15-26. A discus-
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sion of notable gas and IR features is included in the following
section. The molecular transition gas maps seen in Figs 15-25 have
been chosen based on significant emission (defined as > 30, where
o = T/ \/5) seen towards or adjacent to the TeV emission. Maps
of the other transitions searched for are not shown.

For the sources for which the TeV could possibly originate from
CR protons, a simple calculation of diffusion time has been used
to help assess the plausibility of the TeV emission coming from
interactions between CRs from a nearby accelerator and dense gas
catalogued in this survey.

To calculate the distance d travelled by CR protons in a given
time, f, we have used

d = \/2D(E,, B, 3)

where D(E,, B) is the diffusion coefficient dependent on maximum
proton energy, E,,, and magnetic field B according to

E,/GeV\™ ., |
—_ cm”s
B/3uG

from Gabici, Aharonian & Blasi (2007). Dy is the average Galactic
diffusion coefficient (Berezinskii et al. 1990), x is the diffusion
suppression coefficient (assumed to be <1 inside molecular cores;
1 outside; Berezinskii et al. 1990; Gabici et al. 2007). The magnetic
field strength as a function of density ny, cm™ using

D(E,, B) = x Do ( “)

By ~10 (=22 )" w6 )
H 300G) M
was taken from Crutcher (1999) based on their Zeeman splitting
measurements in molecular clouds.

4.1 HESS J1745-303

HESS J1745-303 in Fig. 15 is a source where NH; (1,1) emis-
sion is coincident with the TeV peak. Of particular interest here is
the broad-line emission of all thermal molecular line transitions
towards the TeV centroid. HESS J1745—303 partially overlaps
both the molecular cloud and the SNR G359.1 — 0.5. The SNR
G359.1 — 0.5 interacts with a molecular cloud as evident by a clus-
ter of 1720 MHz OH masers towards the SNR rim. This SNR has
been attributed to producing this broad-line emission; however, the
broad-line emission has a kinematic velocity that differs from that of
the masers by around 50 km s~! and the broad emission line region
lies outside the boundary of the SNR observed in radio contin-
uum (see Fig. 15 where the SNR boundary is indicated). Broad-line
molecular gas is only observed towards one region of the gamma-
ray emission, defined as region A by Aharonian et al. (2008c, and
indicated in Fig. 15), which includes the highest TeV gamma-ray
significance region, the 7o contour. The molecular line emission
detected in our study, within the 7o significance contour, includes
this broad emission line cloud (FWHM > 10 km s~'), the spectra
of which are displayed in the LHS of Fig. 15. In addition to broad
emission lines, NHj3 (3,3) emission is observed to have a higher
peak brightness temperature than NH; (2,2) and (1,1). As discussed
in Section 3.2, this molecular cloud has an enhanced ortho-to-para
NH; abundance ratio that we believe is due to the previous pas-
sage of a shock through the cloud. The nature of the shock is not
clear as this gas is outside the boundary of the observed SNRs in
the region. Non-thermal broadening (i.e. from turbulence) of these
spectral lines dominates over the thermal broadening (<4 km s™'),
which further supports that a shock has passed through this molec-
ular cloud. This will be discussed in more detail in a future study
(de Wilt & Rowell, in preparation).
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Figure 15. 12 mm peak pixel maps of molecular line emission towards the TeV source HESS J1745—303. TeV significance contours (40—70; Aharonian
et al. 2008c) are shown in black. Tmages of the peak pixel along the line of sight between LSR velocities —200 and 200 km s~! of NH3 (/, K), J =K = 1,
2, 3) are seen. Broad-line emission is displayed in the spectra of all thermal lines seen towards the 7o TeV significance contour; however, no HoO masers or
H69« emission is detected in our study. Spectra from a dense cloud core towards the SW component of TeV emission are seen (on the RHS here) offset in
velocity from the broad emission by ~55 km s~!. The size of the region each of the spectra displayed in this image and Figs 17, 19, 21, 23 and 25 is taken

from is given by one 12 mm beam size (displayed in each image).

There are several other potential sources of CR hadrons and/or
electrons in the region that include two energetic pulsars, an
additional SNR, G359.0—0.9 (all of which are indicated in Fig. 15),
and a further radio continuum feature seen in archival data taken as
part of the Molonglo Galactic Plane Surveys (Green 1999), which
could potentially be another SNR (see de Wilt et al., in preparation).

Previous studies have discussed the lack of molecular cloud emis-
sion towards the west and south-west components of TeV emis-
sion in HESS J1745—303 (e.g. Aharonian et al. 2008c; Hayakawa
et al. 2012). Our study confirms a lack of broad molecular line
emission towards these components of TeV emission, and therefore
suggests that there are no Galactic ridge molecular cloud counter-
parts to the west and south-west components of the TeV source.
We have identified dense molecular gas through NHj transitions
that are found towards region B [as defined by Aharonian et al.
(2008c) and seen in Fig. 15], which may be associated with the TeV
emission. The NH; emission from these dense gas cloud cores ex-
hibits narrow linewidths (<4 km s~') that suggests that the emission
is foreground or background to the Galactic Centre (GC). Purcell
et al. (2012) state that the sensitivity of the HOPS observations
means that it is unlikely that any emission seen is background to
the GC, which makes it likely that these clouds are foreground to
the GC. The association between this newly detected gas and the
TeV emission is being investigated further, and the results will be

presented in a future paper. The narrow-line NHj3 (1,1) emission
extent and spectrum can be seen in Fig. 15.

Fig. 16 shows that no active star formation is seen overlapping
the TeV centroid in either the Spitzer IR bands nor in the molec-
ular tracers used in our study. A similar situation is seen towards
HESS J1801—-233, the TeV peak towards the interacting SNR W28
(Nicholas et al. 2011). The lack of IR emission here supports the
interpretation of the broad-line emission not being associated with
heating due to star formation processes, but perhaps due to addi-
tional energetics such as kinetic energy provided by a shock that has
passed through the gas cloud. As the gas lies outside the boundary
of the SNR G359.1-0.5 as seen in radio continuum, we propose
that there has been another shock that has passed through the cloud,
producing the post-shocked gas characteristics of broad-line emis-
sion, an ortho-to-para brightness temperature ratio > 1 as well as
extended SiO (1-0) emission.

4.2 HESS J1640—465

Fig. 17 displays NH; (1,1) emission towards the edges of the
TeV gamma-ray source HESS J1640—465. The gamma-ray emis-
sion is seen towards the SNR G338.3—0.0 and a giant Hu re-
gion G338.4+0.1, both detected in radio continuum at 843 MHz
(Whiteoak & Green 1996). The faint ASCA X-ray source AX

MNRAS 468, 2093-2113 (2017)
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Table 4. All molecular detections from molecular clumps with NHz (1,1) emission towards Galactic TeV sources. This table shows an extract from the full
table, which is available from the online appendix. For individual sources such as HESS J1745—303, the large spread of distances between different molecular
clouds may be due to the clouds being located at different distances along the line of sight, or perhaps due to intrinsic movement of the molecular clouds.
HESS J1745—303 is located close to the CMZ, and so the Galactic rotation curve used here does not include solutions for the distances to several molecular
clouds observed. For HESS J1745—303, we believe that the clouds are separated into several distinct distance groups. These distance ambiguities will be
investigated further in an upcoming paper (de Wilt & Rowell, in preparation).

TeV source NH; NH3 NH; (1,1) kinematic distance H, NNH, H,
(1,1) (1,1) VLsrR near far mass (near) x1013 density
! b (kms~h) (kpc) (kpe) Mg (em™?) (cm™¥)
HESS J1626—490 334.71 0.04 —86.46 5.5 8.6 0.2 7.7 1.3 x 103
HESS J1640—465 338.09 0.01 —40.00 33 11.2 1153 8.4 5.8 x 102
338.33 0.14 —36.59 3.1 114 100 1.3 1.2 x 10%
338.47 0.04 —37.01 32 11.3 975 5.2 3.1 x 10%
HESS J1729-345 353.28 —0.06 —16.09 39 10.2 - - -
HESS J1745-303 358.37 —0.46 6.50 - - 353 1.2 0.6 x 10%
358.46 —0.38 —3.73 33 9.3 186 2.4 2.2 x 10%
358.59 —0.81 2.66 19.4 -
358.64 —0.40 —-6.71 6.3 - 0.1 0.4 6.7 x 10%
358.80 —-0.36 —29.73 - - 23 827 11.1 2.0 x 107
358.81 —0.51 —54.02 - - -
HESS J1804—-216 8.14 0.22 17.96 3.7 10.5 517 3.0 1.8 x 10?
8.25 0.17 17.10 35 10.7 212 1.4 1.0 x 10%
8.40 —0.28 36.71 6.7 - 7669 34 0.6 x 10%
8.68 —0.40 36.71 6.4 - 8091 4.8 1.0 x 10%
HESS J1848—018 30.72 —0.07 92.16 5.2 9.2 1942 6.3 2.9 x 10%
30.78 —0.08 94.30 5.1 9.1 1.2 4.8 8.1 x 10°
30.81 —0.04 93.87 5.1 9.1 1909 5.9 2.6 x 10%
30.98 —0.14 77.25 4.4 10.0 - - -

Galactic latitude

~1.000

21,100

~ SNR G359.0-0.9

:4359;400 359.200 359?000 358.800 358|.600> 358;400 358.200

Galactic longitude

Figure 16. Spitzer GLIMPSE/MIPSGAL three-colour (RGB = 24/8/4.5 um M Jy sr~!) image of the region towards HESS J1745—303 (the TeV emission
is indicated by white contours). Several ‘rings’ can be seen in the green, 8 um emission; however, there is no indication of star formation in these IR bands

towards the TeV emission.

J1640.7—4632 (see Sugizaki et al. 2001) is coincident with
HESS J1640—465, as is the Fermi-Large Area Telescope (LAT)
source 3FGL J1640.4—4634. A separate TeV source named
HESS J1641—463, with a harder spectral index, to the edge of
this TeV source is seen (see Lemoine-Goumard et al. 2014) towards
the SNR G338.5+00.1. The molecular line emission seen in HOPS

MNRAS 468, 2093-2113 (2017)

data shows broad (~5 km s~') NH; emission in the (1,1)-to~(3,3)
inversion transitions, indicative of shocked/excited gas towards the
giant Huregion G338.4+0.1, located between the two TeV sources.
Several H,O masers (Walsh et al. 2011) are seen towards and sur-
rounding this TeV source (seen in Fig. 17), indicating the ongoing
star formation in the region. All of the detected molecular line
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H69« emission indicating both ongoing star formation and ionized gas.
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Figure 18. Spitzer GLIMPSE/MIPSGAL three-colour (RGB = 24/8/4.5 um M Jy sr!) image of the region towards HESS J1640—465 and HESS J1641—463.
Two giant Hi complexes are seen as prominent features of this image. G338.44-0.1 lies between the two TeV sources. These Hu complexes are both traced

by H69« in our study (seen in Fig. 17).
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transitions have a far kinematic distance matching that of both of
the SNRs in the region (~11 kpc; Kothes & Dougherty 2007).

The pulsar PSR J1640—4631 has been recently discovered by
Gotthelf et al. (2014), using the Nuclear Spectroscopic Telescope
Array, towards HESS J1640—465 with a spin-down luminosity of
4.4 x 10% erg s—!. The pulsed X-ray emission and the TeV centroid
of HESS J1640—465 occur at the centre of the SNR G338.3—0.1.
This, together with the morphology of the molecular material de-
tected in our study (which surrounds the TeV emission), may
favour a PWN model for the TeV emission. Rescaling the TeV
flux (>1 TeV) to the distance of the SNRs and NH;3 emission gives
a gamma-ray luminosity of 2.4 x 103 erg s~!. Assuming that
PSR J1640—4631 is linked to SNR G338.2—0.0, and so is at a dis-
tance of 11 kpc, and is powering the PWN HESS J1640—465, the
apparent efficiency of PSR J1640—4631 would be ~0.05 per cent,
within the range of confirmed TeV PWNe, 0.01 to 7percent
(Gallant et al. 2008).

3FGL J1640.4—4634, also catalogued as 1FGL J1640.8—4634,
the Fermi-LAT GeV source coincident with HESS J1640—465, has
a spectrum (from five years of Fermi-LAT data) that joins smoothly
to the TeV spectrum (Lemoine-Goumard et al. 2014). This smooth
spectrum from GeV to TeV favours a hadronic origin to the TeV
gamma-rays, and has been reproduced by a hadronic model of
HESS J1640—465 (Lemoine-Goumard et al. 2014); however, the
spectrum can also be reproduced by fine tuning to a leptonic, PWN
model (see Gotthelf et al. 2014), and so this possibility cannot be
ruled out.

Adjacent to HESS J1640—465 is the TeV source
HESS J1641—463 (Abramowski et al. 2014). This source
has a harder spectral index than HESS J1640—465 and several
possible counterparts including SNR G338.5+0.1; several X-ray
sources (which may point towards a PWN scenario) have been iden-
tified (Abramowski et al. 2014). HESS J1641—463 could also be a
TeV binary system, although no variability in TeV gamma-rays or
X-rays has been observed in current data (Abramowski et al. 2014).
The spectrum of the GeV source 3FGL J1641.1—-4619c is very
soft (see Lemoine-Goumard et al. 2014), compared to the hard
TeV spectrum detected by HESS (Abramowski et al. 2014) that
suggests different origins for the GeV and TeV gamma-rays. Lau
et al. (2017) have used observations of many molecular and atomic
transitions towards HESS J1640—465 and HESS J1641—-463 to
gain an understanding of total gas distribution and mass to explore
both hadronic and leptonic TeV emission scenarios. Lau et al.
(2017) find that in a hadronic origin for the gamma-ray emission,
the CR enhancement rates are ~10* and ~10? times the local solar
value for HESS J1640—465 and HESS J1641—463, respectively. In
the hadronic case, if HESS J1641—465 were produced by runaway
protons from the SNR G338.3—0.0 and applying the diffusion
distance estimate according to equation (3), protons of 100 TeV
would take ~10 000 yr to travel from the SNR to the second TeV
source if moving through the dense gas. In this case, however, we
would expect the TeV gamma-rays to peak along with the density
of molecular gas, which, as can be seen in Fig. 17, appears not to
be the case. As outlined by Lau et al. (2017), and that can be seen
in Table 2, in the highest density region, there are molecular cloud
cores at different distances along the line of sight, which could
allow for CR diffusion between them. This would allow for the CRs
to diffuse faster, and using the diffuse gas parameters of Lau et al.
(2017), we calculate that 100 TeV protons would take ~1600 yr
to diffuse from SNR G338.3—0.0 to HESS J1641—463. As the
age of SNR G338.3—0.0 has been estimated from 1-2 kyr up to
5-8 kyr, this would allow time for VHE CRs to travel from SNR

MNRAS 468, 2093-2113 (2017)

G338.3—0.0 to produce the TeV emission from HESS J1641—-463,
between dense cloud cores (as outlined in Lau et al. 2017).

4.3 HESS J1848—018

HESS J1848—018 is located towards the W43 star-forming re-
gion. No obvious counterparts for the TeV emission such as SNRs
or energetic pulsars are seen towards HESS J1848—018 (Chaves
et al. 2008). The high-mass stellar cluster W43 is offset from the
centroid of the TeV emission within a giant molecular cloud with
mass ~10° M detected in both submillimetre wavelengths (Motte,
Schilke & Lis 2003) and '*CO (Jackson et al. 2006). This cluster
contains the high-mass binary system, WR 121a, catalogued by
van der Hucht (2001) and classified as a CWB by Anderson et al.
(2011). Our observations (Fig. 19) reveal broad NH; emission lines
in the giant molecular cloud as well as H,O maser emission and
H69« emission indicative of ongoing star formation and ionized
gas towards WR 121a. The H69« emission traces the H1 region
G30.8—0.0 (Lester et al. 1985). The IRDC G030.97—00.14, cata-
logued by Rathborne, Jackson & Simon (2006), is seen towards the
TeV centroid in Fig. 20, overlapping a gas clump detected in NH;
(1,1) by our study. Spectra towards this gas clump are displayed on
the LHS of Fig. 19, which show H,O maser emission, indicative
of active star formation. Due to the coincident IRDC, we suggest
that this is an early star-forming region, slightly foreground to the
W43 region that provides much of the extended, background 8 pm
emission in Fig. 20, which is being absorbed by the cold, dense gas.

CWBs are expected to produce leptonic gamma-ray emis-
sion through IC scattering up to a few GeV (e.g. Pittard &
Dougherty 2006; De Becker & Raucq 2013). Theoretical mod-
els suggest that, given a suitable environment, stellar winds that
are ejected during the high-mass star evolution may also be able to
accelerate hadrons as effectively as SNRs (see Farnier et al. 2011,
and references therein). If the CWB WR 121a is indeed responsible
for the TeV emission, then approximately 3 per cent of the kinetic
power of the wind—wind collision (estimated to be ~10% erg s~
in the system WR140; Pittard & Dougherty 2006) is converted into
TeV emission. This agrees with numerical simulations of relativistic
collisionless shocks, which indicate that at least 10 per cent of en-
ergy is converted into relativistic particles downstream of the shock
(Spitkovsky 2008).

Coincident with HESS J1848—018 are the Fermi-LAT source
3FGL J1848.4—0141 (Acero et al. 2015) and HAWC source
1HWCJ1849—017c (Abeysekara et al. 2016). While spectra of the
HESS and HAWC sources have not been published, a continu-
ous spectrum from Fermi-LAT energies up to tens of TeV (where
HAWC is most sensitive) would point towards a hadronic origin
to the gamma-rays, as leptonic sources are expected to cut off at
lower energies. Further studies to determine the TeV morphology
of HESS J1848—018 would be beneficial in determining whether
the CWB WR 121a is a possible counterpart to the TeV emission.
The cold, dense core detected by NH; observations in our study
towards the IRDC G030.97—00.14 is within 2 arcmin of the TeV
centroid and could provide a target for accelerated hadrons. A study
of the morphology of more diffuse gas (i.e. that traced by '>?CO(1-0)
and H1) is planned, and will give clues as to the origin of the TeV
gamma-rays.

4.4 HESS J1626—490

The centroid of HESS J1626—490 is found within 025 of the SNR
G335.2 4 0.1 that has been noted as a possible source of accelerated
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Figure 19. 12 mm peak pixel maps of molecular line emission towards the TeV source HESS J1848—018. The centroid position of TeV emission is indicated
by a + and intrinsic size by the dashed circle. Peak brightness temperature images (as described in Fig. 15) of NH3 (1,1), H,O maser and H69« are shown.
The mapping region is indicated by a green, dashed box and does not cover the extent of the TeV emission. The RHS spectra display emission in all molecular
line transitions included in our study, indicating dense gas along with ongoing star formation and ionized gas towards the stellar cluster W43. The LHS spectra
display emission in NH3 (1,1) and NH;3 (2,2) indicating dense gas and H,O emission indicating ongoing star formation towards the TeV emission centroid.
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Figure 20. Spitzer GLIMPSE/MIPSGAL three-colour (RGB = 24/8/4.5 um M Jy sr™!) image of the region towards HESS J1848—018. The TeV emission is
displayed as in Fig. 19. Notable features in this IR image include a saturation of 24 pm emission towards the W43 stellar cluster that contains CWB WR 121a
as well as excess emission seen in all IR bands surrounding this region. The IRDC G030.97—00.14 is also seen, towards the TeV centroid, which matches the
position of the gas clump traced by NH3 (1,1) emission seen in Fig. 19.
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image.

particles responsible for the TeV emission (see Eger et al. 2011).
An H1 void is seen in Southern Galactic Plane Survey (SGPS;
McClure-Griffiths et al. 2005) data between velocities of —24 and
9 km s~! that is thought to correspond to the SNR (Eger et al. 2011).
The GeV Fermi-LAT source 3FGL J1626.2—4911 is coincident
with HESS J1626—490; however, the GeV and TeV spectra are
not well matched and so the sources may not be associated. Our
study reveals NH; (1,1) emission towards the TeV peak that can
be seen in Fig. 21. The NH; (1,1) emission has a kinematic ve-
locity of —86 km s~!, giving implied kinematic distance solutions
~5.5 kpc (near) and ~8.6 kpc (far). The position of the molecular
clump traced by NH; emission in our study corresponds to that
of an IRDC that can be seen in Fig. 22. This indicates that it is
foreground to the widespread IR emission. This IRDC, MSXDC
G334.70+0.02, has been previously catalogued by Jackson et al.
(2008). The widespread IR emission is assumed to originate from
the complex containing the H i region G334.684—0.107, which has
a distance of 12.8 kpc (Russeil et al. 2005). Both the near and
far kinematic distances of the NH3 clump are foreground to the
Hn region so this does not resolve the distance ambiguity. H1 ab-
sorption towards the SNR G335.2+0.1 seen in H1 data from SGPS
(McClure-Griffiths et al. 2005) indicates an SNR distance between
5.9 and 12.4 kpc. Assuming that the SNR and NHj; detected molec-
ular core are at the same distance, we can assign the far distance
of 8.7 kpc to the NH3 (1,1) emission detected in this study. At
a distance of 8.7 kpc, the distance for CR protons to travel from
the SNR shell to the far side of HESS J1626—490 is 76 pc. Us-
ing equations (3) and (5) and assuming an average gas density of
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1 x 102 cm~ towards the TeV emission, 103 eV CR protons would
take ~5300 yr to traverse this distance, and lower energy CRs would
take a longer time. This would indicate a middle-aged or old SNR,
at an age similar to other TeV emitting SNRs where a hadronic
scenario is supported.

4.5 HESS J1804—-216

HESS J1804—216 is seen towards a number of interesting features
including SNR G8.7—0.1 (Odegard 1986) and several H 1 regions
observed as part of catalogues (Wink, Altenhoff & Mezger 1982;
Lockman, Pisano & Howard 1996; Kuchar & Clark 1997). The
high spin-down power (2.2 x 10 erg s~') PSR J1803—2137 of-
fers a plausible PWN emission scenario for HESS J1804—216.
However, the nature of the TeV source and its association with the
X-ray sources found towards this object are still unclear (Kargaltsev,
Pavlov & Garmire 2007). There is a 1720 MHz OH maser along the
border of SNR G8.7—0.1. This maser signals a shock interaction
between the SNR and dense clouds (Frail & Mitchell 1998); how-
ever, this maser is not coincident with the TeV emission as seen in
Fig. 23. Several dense cloud clumps are seen in our study and are
traced by the emission lines indicated in Table 2.

The dense gas seen in our study mainly surrounds the published
extent of TeV emission. Thus, the morphology of the cool, dense
gas supports a PWN scenario for the TeV emission. However, there
is IR polyaromatic hydrocarbon (PAH) emission over the extent of
the TeV emission, indicating that there is likely diffuse molecular
material in this region not detected in our study. The lack of detected
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12 mm emission towards the 1720 OH maser suggests that there are
undetected molecular clouds in our study, since molecular material
with a density ~10° cm™ is needed to produce 1720 MHz OH
maser emission (Lockett, Gauthier & Elitzur 1999; Wardle 1999).
This additional molecular material as well as atomic material traced
by H1 may provide enough target material for a hadronic origin
of the TeV emission. Almost all NHj3 (1,1) emitting clumps near
HESS J1804—216 display H,O maser emission (as seen in Fig. 23).

HESS J1804—216is one of the brightest unidentified TeV sources
and so may provide the opportunity for improved angular resolution
studies and energy-dependent morphology studies in TeV gamma-
rays, potentially reducing confusion between counterparts at other
wavelengths. Further studies of molecular gas, including tracers of
warmer and more diffuse gas such as '2CO(1-0), CS(1-0) and H1
emission, should be undertaken in this region to account for more
of the gas mass than is implied by our studies.

4.6 HESS J1729-345

HESS J1729—345 (aka HESS J1731—347 B) is offset from a TeV
shell, HESS J1731—347 A (Abramowski et al. 2011b), and lies
near the direction of the H 11 region G353.381—0.114 catalogued in
Caswell & Haynes (1987) at a distance of >7.5 kpc that is not traced
in this study. Previously, this H 1 region has been suggested as an
indication for a molecular cloud complex, possible counterpart to
HESS J1729—345. This molecular cloud complex is seen, traced
by PAH emission in Fig. 26. In this work, a dense gas clump,
traced with emission from the NHj3 (1,1) transition, is seen towards
HESS J1729—345, at a velocity of —16 km s~!. This gas feature is
seen in Fig. 25 and also as an IRDC in Fig. 26. As this molecular
cloud is seen as an IRDC, we can deduce that the NH3 emission is
foreground to the PAH emission which rules out the far kinematic
distance solution, and tells us that the NH; cloud core is at the
near kinematic distance solution of 3.8 kpc. This distance is within
errors of a previous distance estimate of the SNR, based on its
assumed connection to the compact Hu region G353.42—0.37, of
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3.2 £ 0.8 kpc (Tian et al. 2008). This is however foreground to
a more recent SNR distance estimate of 5.2-6.2 kpc based on the
assumption that the SNR is within the 3 kpc expanding arm (Fukuda
etal. 2014). Further preliminary discussion about the distance of this
source can be seen in Maxted et al. (2012), which details CS(1-0)
emission.

If the molecular clump detected in this study was a counterpart
to HESS J1729—345, the TeV emission could arise from 7° decay
resulting from p—p collisions between CRs accelerated in the SNR.
We assume the SNR is at a distance of 3.8 kpc (Tian et al. 2008),
along with the molecular clump towards HESS J1729—345 traced
by NH; (1,1) in our study. At this distance and with an angular
separation between the centre of the SNR and HESS J1729—-345
of ~0°5, the protons would have travelled approximately 30 pc.
Using the method outlined in Section 2, it would take ~140 yr for
a 10 eV proton to diffuse from the SNR (HESS J1731—347) to
HESS J1729—345 and ~1400 yr for a 10'? eV proton. With an SNR
age estimate of 27 000 yr (Tian et al. 2008), protons would have
sufficient time to travel and interact with the molecular gas towards
HESS J1729—345 and produce the TeV emission.

5 CONCLUSIONS/FURTHER WORK

The first large-scale systematic study of dense (>10* cm™>) gas to-
wards Galactic TeV sources has been completed. HOPS-equivalent
coverage provides a good first look at distribution and dynamics
of dense gas towards Galactic TeV sources. Knowledge about
gas density profiles towards TeV sources allows for more ro-
bust studies of CR diffusion. Preliminary results suggest that
12 mm NHj; inversion transitions, used to estimate NH; OPR,
could be used to search for regions of dense gas with previ-
ous shock activity. With this first look, we have found dense
gas counterparts to unidentified regions of TeV emission in-
cluding HESS J1745—-303B and HESS J1745—303C as well as
HESS J1848—018 and HESS J1626—490, which indicate that it is
likely that there is a hadronic component to these sources.
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Further observations of TeV sources showing dense gas over-
lap traced by the NH; (1,1) emission seen in the HOPS would be
beneficial at millimetre wavelengths. Further 12 mm observations
would provide more sensitivity to dense gas clumps traced by NHj3
emission. Observations at 7 mm to trace molecular transitions such
as SiO(1-0), which traces shocked gas, and CS(1-0), which traces
the denser features of gas clouds, will provide better understanding
of the mechanisms producing the relativistic particles producing
the TeV gamma-rays as well as understanding the kinematics of the
densest parts of gas towards these TeV gamma-ray sources. Further
12 mm observations that include the NH; (4,4) and (5,5) transi-
tions would be beneficial to estimate the NH; OPR in sources for
which we have found an anomalous NH; (3,3)-to-(1,1) brightness
temperature ratio.

In addition, studies of particle transport within individual TeV
sources should include not only the dense gas described here, but
also observations of moderately dense molecular gas, e.g. that traced
by CO(1-0), and atomic gas, traced by H1, in order to understand
density profiles of molecular clouds towards and adjacent to the
TeV emission. The Mopra CO survey (Burton et al. 2013) pro-
vides a large-scale study for more diffuse gas towards Galactic TeV
sources. With an angular resolution of 33 arcsec, and the inclusion
of several isotopologues (including which help to trace a range of
molecular gas densities, the Mopra CO survey will provide the most
accurate large-scale look at molecular gas in the Milky Way for use
with current and future gamma-ray data sets. The Mopra CO and
HOPS angular resolution (33 arcsec and 1 arcmin, respectively)
and the future CTA angular resolution (2-3 arcmin between 1 and
10 TeV) are comparable and have the ability to resolve molecu-
lar cloud cores. In addition, all of these observations will cover
a significant portion of the Galactic plane allowing for improved
morphological comparison studies, and robust statistical studies of
molecular gas and TeV gamma-rays. These higher resolution gas
surveys will also provide a necessary picture of the distribution
of Galactic gas to be used for new gamma-ray emission templates
needed for higher angular resolution gamma-ray observations. H1
gas is also an important contribution to the target gas mass for CRs
(e.g. Fukui et al. 2012). Quantifying the contribution from H1 has
been improved with recent studies of optically thick H1 in the ISM
(e.g. Fukui et al. 2015). The contribution of dark gas (both molecular
and atomic) may also be important (e.g. Burton et al. 2015).

Currently, a robust statistical study of the overlap between Galac-
tic TeV emission and star-forming regions is not possible due to con-
fusion, sensitivity and uneven coverage. Recent observations of the
Large Magellanic Cloud (H.E.S.S. Collaboration et al. 2015a) have
shown that superbubbles are capable of producing TeV emission,
and it is suspected that we will find similar Galactic environments.
As the angular resolution of TeV instruments improves, specifically
with CTA, to match that of molecular gas studies (such as HOPS and
Mopra CO) and also the sensitivity of molecular gas observations
improves, a much better understanding of the emission mechanisms
and high-energy particle transport in Galactic star-forming regions
will evolve.
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