14 research outputs found

    Blockade of endothelin B receptor improves the efficacy of levetiracetam in chronic epileptic rats

    Get PDF
    AbstractPurposeTo elucidate the mechanisms that regulate p-glycoprotein (PGP) expression and function in pharmacoresistant epilepsy, we investigated the effect of an ETB receptor antagonist (BQ788) and a p38 mitogen-activated protein kinase (p38MAPK) inhibitor (SB202190) on intractable seizures in chronic epileptic rats.MethodsLithium-pilocarpine-induced chronic epileptic rats were used in the present study. Animals were given levetiracetam (LEV), LEV+SB202190, LEV+BQ788, SB202190 or BQ788 over a 3-day period using an osmotic pump. Seizure activity was recorded by video-EEG monitoring with 2h of recording per day at the same time of day. We also performed western blot after EEG analysis.ResultsCompared to control animals, PGP, ETB receptor and p38MAPK expression was increased in the hippocampus of epileptic animals. Neither SB202190 nor BQ788 affected the spontaneous seizure activity in epileptic rats. Three of ten rats were responders and achieved complete seizure control or significant reduction in seizure activity by LEV. In four of ten rats, seizure frequency was unaltered by LEV (non-responders). LEV+SB202190 reduced seizure duration, but not seizure frequency, in both responders and non-responders. LEV+BQ788 alleviated seizure frequency and seizure duration in both responders and non-responders. Compared to responders, PGP and ETB receptor expression was enhanced in the hippocampus of non-responders.ConclusionTo the best of our knowledge, these findings are the first indications of the role of ETB receptor in pharmacoresistant epilepsy. Therefore, the present data suggest that the regulation of the ETB receptor-mediated signaling pathway may be important for identification of new therapeutic strategies for improving antiepileptic drug efficacy

    Mitochondrial Translocation of High Mobility Group Box 1 Facilitates LIM Kinase 2-Mediated Programmed Necrotic Neuronal Death

    No full text
    High mobility group box 1 (HMGB1) acts a signaling molecule regulating a wide range of inflammatory responses in extracellular space. HMGB1 also stabilizes nucleosomal structure and facilitates gene transcription. Under pathophysiological conditions, nuclear HMGB1 is immediately transported to the cytoplasm through chromosome region maintenance 1 (CRM1). Recently, we have reported that up-regulation of LIM kinase 2 (LIMK2) expression induces HMGB1 export from neuronal nuclei during status epilepticus (SE)-induced programmed neuronal necrosis in the rat hippocampus. Thus, we investigated whether HMGB1 involves LIMK2-mediated programmed neuronal necrosis, but such role is not reported. In the present study, SE was induced by pilocarpine in rats that were intracerebroventricularly infused with saline, control siRNA, LIM kinase 2 (LIMK2) siRNA or leptomycin B (LMB, a CRM1 inhibitor) prior to SE induction. Thereafter, we performed Fluoro-Jade B staining, western blots and immunohistochemical studies. LIMK2 knockdown effectively attenuated SE-induced neuronal death and HMGB1 import into mitochondria accompanied by inhibiting nuclear HMGB1 release and abnormal mitochondrial elongation. LMB alleviated SE-induced neuronal death and nuclear HMGB1 release. However, LMB did not prevent mitochondrial elongation induced by SE, but inhibited the HMGB1 import into mitochondria. The efficacy of LMB was less effective to attenuate SE-induced neuronal death than that of LIMK2 siRNA. These findings indicate that nuclear HMGB1 release and the subsequent mitochondrial import may facilitate and deteriorate programmed necrotic neuronal deaths. The present data suggest that the nuclear HMGB1 release via CRM1 may be a potential therapeutic target for the programmed necrotic neuronal death induced by SE

    Male patients presenting with rapidly progressive puberty associated with malignant tumors

    No full text
    In males, precocious puberty (PP) is defined as the development of secondary sexual characteristics before age 9 years. PP is usually idiopathic; though, organic abnormalities including tumors are more frequently found in male patients with PP. However, advanced puberty in male also can be an important clinical manifestation in tumors. We report 2 cases of rapidly progressive puberty in males, each associated with a germ-cell tumor. First, an 11-year-old boy presented with mild fever and weight loss for 1 month. Physical examination revealed a pubertal stage of G3P3 with 10-mL testes. Investigations revealed advanced bone age (16 years) with elevated basal luteinizing hormone and testosterone levels. An anterior mediastinal tumor was identified by chest radiography and computed tomography, and elevated α-fetoprotein (AFP) and β-human chorionic gonadotropin (β-hCG) levels were noted. Histopathologic analysis confirmed a yolk-sac tumor. Second, a 12-year-old boy presented with diplopia, polydipsia, and polyuria for 4 months. Physical examination revealed a pubertal stage of G3P3 with 8-mL testes. Bone age was advanced (16 years) and laboratory tests indicated panhypopituitarism with elevated testosterone level. A mixed germ-cell tumor was diagnosed with elevated AFP and β-hCG levels. Of course, these patients also have other symptoms of suspecting tumors, however, rapidly progressive puberty can be the more earlier screening sign of tumors. Therefore, in male patients with accelerated or advanced puberty, malignancy should be considered, with evaluation of tumor markers. In addition, advanced puberty in male should be recognized more widely as a unique sign of neoplasm

    Hypotonic hyponatremia by primary polydipsia caused brain death in a 10-year-old boy

    No full text
    Hypotonic hyponatremia by primary polydipsia can cause severe neurologic complications due to cerebral edema. A 10-year-and-4-month-old boy with a psychiatric history of intellectual disability and behavioral disorders who presented with chief complaints of seizure and mental change showed severe hypotonic hyponatremia with low urine osmolality (serum sodium, 101 mmol/L; serum osmolality, 215 mOsm/kg; urine osmolality, 108 mOsm/kg). The patient had been polydipsic for a few months prior, and this had been worse in the previous few days. A diagnosis of hypotonic hyponatremia caused by primary polydipsia was made. The patient was in a coma, and developed respiratory arrest and became brain death shortly after admission, despite the treatment. The initial brain magnetic resonance imaging showed severe brain swelling with tonsillar and uncal herniation, and the patient was declared as brain death. It has been reported that antidiuretic hormone suppression is inadequate in patients with chronic polydipsia, and that this inadequate suppression of antidiuretic hormone is aggravated in patients with acute psychosis. Therefore, hyponatremia by primary polydipsia, although it is rare, can cause serious and life-threatening neurologic complications
    corecore