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Blockade of endothelin B receptor improves the efficacy
of levetiracetam in chronic epileptic rats
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A B S T R A C T

Purpose: To elucidate the mechanisms that regulate p-glycoprotein (PGP) expression and function in

pharmacoresistant epilepsy, we investigated the effect of an ETB receptor antagonist (BQ788) and a p38

mitogen-activated protein kinase (p38MAPK) inhibitor (SB202190) on intractable seizures in chronic

epileptic rats.

Methods: Lithium-pilocarpine-induced chronic epileptic rats were used in the present study. Animals

were given levetiracetam (LEV), LEV + SB202190, LEV + BQ788, SB202190 or BQ788 over a 3-day period

using an osmotic pump. Seizure activity was recorded by video-EEG monitoring with 2 h of recording per

day at the same time of day. We also performed western blot after EEG analysis.

Results: Compared to control animals, PGP, ETB receptor and p38MAPK expression was increased in the

hippocampus of epileptic animals. Neither SB202190 nor BQ788 affected the spontaneous seizure

activity in epileptic rats. Three of ten rats were responders and achieved complete seizure control or

significant reduction in seizure activity by LEV. In four of ten rats, seizure frequency was unaltered by

LEV (non-responders). LEV + SB202190 reduced seizure duration, but not seizure frequency, in both

responders and non-responders. LEV + BQ788 alleviated seizure frequency and seizure duration in both

responders and non-responders. Compared to responders, PGP and ETB receptor expression was

enhanced in the hippocampus of non-responders.

Conclusion: To the best of our knowledge, these findings are the first indications of the role of ETB

receptor in pharmacoresistant epilepsy. Therefore, the present data suggest that the regulation of the ETB

receptor-mediated signaling pathway may be important for identification of new therapeutic strategies

for improving antiepileptic drug efficacy.

� 2015 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

The ATP-cassette-binding protein (ABC) family contains drug
efflux transporters that exclude antiepileptic drugs (AED) from the
brain to the blood. Among them, p-glycoprotein (PGP) is a well-
characterized drug efflux transporter in the brain–blood barrier
(BBB). Inhibitions of PGP expression and activity show substan-
tially increased brain levels of anticonvulsant agents and
improvement of anticonvulsant responses [1,2]. Therefore, drug
efflux transporter expression/activity is one of the limiting factors
in epilepsy pharmacotherapy [3].

Recently, we have reported that endothelin-1 (ET-1) expression
is up-regulated in vessels within the rat piriform cortex following
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status epilepticus (SE), which is one of the epileptogenic insults [4,5].
ET-1 is a potent vasoactive 21-amino acid peptide that binds to the
ETA and ETB receptors. ETA receptor activation induces vasocon-
striction [6], while ETB receptor activation results in vasodilation via
nitric oxide (NO) production [7–10]. In addition, ET-1 regulates PGP
expression and transport activity in isolated, intact rat brain
capillaries, but not in rat brain capillary endothelial cell lines
[11–15]. In addition, ET-1 activates the p38 mitogen-activated
protein kinase (p38MAPK) signaling pathway, which is involved in
the regulation of PGP and ET-1 expression [16–22]. Interestingly, ETB

receptor activation potentiates the production and secretion of
more ET-1 in an autocrine positive feedback loop [23–26]. With
respect to these properties of ET-1, it is likely that increases in ET-1
concentration or ETB receptor activation in the epileptic hippocam-
pus would have the undesired effect of reducing AED efficacy via up-
regulation of PGP expression. However, little is known about
whether ET-1 is involved in the pharmacoresistance in chronic
epilepsy. Therefore, we investigated the effect of an ETB receptor
served.
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antagonist (BQ788) and a p38MAPK inhibitor (SB202190) on
intractable seizures in chronic epileptic rats.

2. Materials and methods

2.1. Experimental animals and chemicals

This study utilized the progeny of male Sprague-Dawley (SD) rats
(7 weeks old) obtained from the Experimental Animal Center, Hallym
University, Chunchon, South Korea. The animals were provided with
a commercial diet and water ad libitum under controlled tempera-
ture, humidity and lighting conditions (22 � 2 8C, 55 � 5% and a 12:12
light/dark cycle with lights). Animal protocols were approved by the
Institutional Animal Care and Use Committee of Hallym University
(Chunchon, Republic of Korea). The number of animals used and their
suffering were minimized in all cases. All reagents were obtained from
Sigma–Aldrich (St. Louis, MO, USA), except as noted.

2.2. SE induction

Animals were given LiCl (127 mg/kg i.p) 24 h before the
pilocarpine treatment. Animals were intraperitoneally (i.p) treated
with pilocarpine (30 mg/kg) 20 min after atropine methylbromide
(5 mg/kg i.p.). Diazepam (Valium; Hoffman la Roche, Neuilly sur-
Seine, France; 10 mg/kg, i.p.) was administered 2 h after onset of SE
and repeated, as needed. Control animals received saline in place of
pilocarpine. Animals were video-monitored 8 h a day for general
behavior and occurrence of spontaneous seizures by 4 weeks after
SE (Fig. 1). Rats showing spontaneous recurrent seizures were used
as chronic epileptic animals.

2.3. Surgery

Control and epileptic rats were anesthetized (Zolretil, 50 mg/kg,
I.M. Virbac Laboratories, France) and placed in a stereotaxic frame.
Thereafter, animals were implanted with depth electrodes in the
right hippocampus. Monopolar stainless steel electrodes (Plastics
One, Roanoke, VA, USA) were lowered stereotaxically into the left
dorsal hippocampus using the following coordinates: �3.8 mm
posterior; 2.0 mm lateral; �2.6 mm depth. Connecting wire and
electrode socket were then inserted in an electrode pedestal
(Plastics One, Roanoke, VA, USA), and secured to the exposed skull
with dental acrylic.

2.4. Drug trials, EEG analysis and Quantification of behavioral seizure

activity

Fig. 1 illustrates the design of the drug trial methodology, which
was a modified protocol based on Glien et al. [27]. After baseline
seizure activity (vehicle treatment) was determined over 3 days,
Fig. 1. Scheme of the experimental design. After baseline seizure activity (saline treat

sequentially administered over a 3-day period using an osmotic pump.
each drug or mixture of compounds was administered over a 3-day
period using an osmotic pump (1003D, Alzet, Cupertino, CA, USA).
The pump was placed in a subcutaneous pocket in the dorsal region
under isoflurane anesthesia (3% induction, 1.5–2% for surgery and
1.5% maintenance in a 65:35 mixture of N2O:O2). Throughout
surgery, the animals were positioned over a heated pad, and core
temperature was monitored and maintained between 37 and
38 8C. Between trials, the minipump was changed out for another
minipump filled with another mixture under isoflurane anesthesia.
The concentration of each drug or mixture of compounds was
LEV (UCB, Belgium, 500 mg/ml), LEV (500 mg/ml) + SB202190 (a
p38MAPK inhibitor, 0.3 mg/ml), and LEV (500 mg/ml) + BQ788 (an
ETB receptor antagonist, 10 mg/ml). To identify the effect of the ETB

receptor or p38MAPK activity on seizure activity, some animals
were given BQ788 (10 mg/ml) or SB202190 (0.3 mg/ml) alone
(n = 5, respectively). Every day during the experiment, seizure
activity was recorded by video-EEG monitoring with 2 h of
recording per day at the same time. EEG signals were recorded
with a DAM 80 differential amplifier (0.1–3000 Hz bandpass;
World Precision Instruments, Sarasota, FL, USA) and the data were
digitized (1000 Hz) and analyzed using LabChart Pro v7 (AD
Instruments, NSW, Australia). EEG analysis was performed by
uploading the data to an automated program (LabChart Pro v7, AD
Instruments, NSW, Australia). Spectrograms were automatically
calculated using a Hanning sliding window with 50% overlap.
Behavioral seizure severity was also evaluated according to
Racine’s scale [28]: 1, immobility, eye closure, twitching of
vibrissae, sniffing, facial clonus; 2, head nodding associated with
more severe facial clonus; 3, clonus of one forelimb; 4, rearing,
often accompanied by bilateral forelimb clonus; and 5, rearing
with loss of balance and falling accompanied by generalized clonic
seizures.

2.5. Western blot

Under urethane anesthesia (1.5 g/kg, I.P.), the left hippocampus
was removed and homogenized in 50 mM Tris containing 50 mM
4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES, pH
7.4), ethylene glycol tetraacetic acid (EGTA, pH 8.0), 0.2% Tergitol
type NP-40, 10 mM ethylenediaminetetraacetic acid (EDTA, pH
8.0), 15 mM sodium pyrophosphate, 100 mM b-glycerophosphate,
50 mM NaF, 150 mM NaCl, 2 mM sodium orthovanadate, 1 mM
phenylmethylsulfonyl fluoride (PMSF), and 1 mM dithiothreitol
(DTT). Tissue lysate proteins were then loaded onto a 10%
polyacrylamide gel. After electrophoresis, gels were transferred
to nitrocellulose transfer membranes (Schleicher and Schuell
BioScience Inc.). To reduce background staining, the filters were
incubated with 5% nonfat dry milk in Tris-buffered saline (TBS)
containing 0.1% Tween 20 for 45 min, followed by incubation with
PGP (GeneTex, USA; diluted 1:1000), ETB receptor (Millipore, USA;
ment) was determined during 3 days, each drug or a mixture of compounds was
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diluted 1:1000) or p38MAPK (Cell Signaling, USA; diluted 1:1000)
antibodies, and subsequently with HRP-conjugated secondary
antibody. The PGP antibody (C219) used in the present study
recognizes two PGP isoforms: multiple drug resistance protein 1
(MDR1) and MDR3 (Abcam, UK; diluted 1:50). Western blotting
was conducted with an ECL Western Blotting Detection Kit
(Amersham, USA) [29]. Optical density values were corrected by
subtracting the average value for background noise. The optical
density was then standardized by setting the threshold levels.

2.6. Data analysis

All data obtained from the quantitative measurements were
analyzed using paired Student’s t-tests or one way ANOVA to
determine statistical significance. Bonferroni’s test was used for
post-hoc comparisons. A p-value below 0.05 was considered
statistically significant [30].
Fig. 2. PGP, ETB receptor and p38MAPK expression in control and epileptic animals. (A) W

epileptic rats (E) compared to control animals (C). Arabic number indicates an individual ani

expression in epileptic animals. *p < 0.05 vs. control rats (n = 5, respectively). (C) Linear regr

Quantitative analysis of effect of PGP, ETB receptor and p38MAPK expression (mean � S.E.M.) 
3. Results

3.1. PGP, ETB receptor and p38MAPK expression in the epileptic

hippocampus

Compared to control animals, MDR1, MDR3, ETB receptor and
p38MAPK expression was increased 1.27-, 1.74-, 1.42- and 1.53-
fold in the hippocampus of epileptic animals, respectively
(p < 0.05, Fig. 2A and B). Linear regression analysis showed a
directly proportional relationship between the intensity of ETB

receptor expression and that of MDR1 and MDR3 with linear
correlation coefficients of 0.5638 and 0.6652, respectively
(p < 0.05, Fig. 2C). The intensity of p38MAPK and that of MDR1
and MDR3 expressions also showed a direct proportional
relationship with linear correlation coefficients of 0.9176 and
0.8736, respectively (p < 0.05, Fig. 2C). BQ788 did not affect
MDR1, MDR3, ETB receptor and p38MAPK expression in the
estern blot shows the up-regulation of PGP, ETB receptor and p38MAPK expression in

mal number. (B) Quantitative values (mean � S.E.M.) of PGP, ETB receptor and p38MAPK

ession analysis of PGP, ETB receptor and p38MAPK expression in the hippocampus. (D)

in control and epileptic animals. *p < 0.05 vs. vehicle in control rats (n = 5, respectively).
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hippocampus of control and epileptic animals, compared to vehicle
(Fig. 2A and D).

3.2. The effect of SB202190 and BQ788 on spontaneous seizure

activity in epileptic animals

In the present study, control animals did not show behavioral or
EEG seizure activity (n = 10). SB202190 and BQ788 infusion could
not induce seizure activity in control animals (n = 5, respectively).
The mean seizure frequency in epileptic animals was 8 � 4.2/
recording session (2 h) and the total seizure duration in epileptic
animals was 684 � 695 s. Vehicle, SB202190 and BQ788 infusion did
not affected the mean seizure frequency and the total seizure
duration in epileptic rats (Fig. 3).

3.3. The effects of LEV and co-treatment with SB202190 or BQ788 on

spontaneous seizure activity in epileptic animals

LEV and co-treatment with SB202190 or BQ788 did not affect
behavior and EEG activity in control animals (n = 10, data not
shown). Similar to a previous study [27], three of ten rats were
responders with complete seizure control (n = 1) or the significant
Fig. 3. The effect of SB202190 and BQ788 on spontaneous seizure activity in epileptic

(B) Quantitative values (mean � S.D) of mean seizure frequency (left), total seizure duration

mean seizure frequency, total seizure duration and seizure severity among the three grou
reduction in seizure activity (n = 2) by LEV. Four of ten rats showed
that seizure frequency was unaltered by LEV (non-responders).
Rest animals (three of ten rats) showed a reduction of seizure
frequency by LEV, but it was not statistically significant compared
to vehicle due to large variation (from 0 to 12) among the daily
recording. In responders, the mean seizure frequency was
2.2 � 2.1/recording session and the total seizure duration was
68.5 � 66 s during LEV treatment, while in non-responders the mean
seizure frequency was 4.6 � 1.4/recording session and the total
seizure duration was 539.3 � 559.7 s (Figs. 4 and 5). During
LEV + SB202190 treatment, the mean seizure frequency was
3.7 � 3.4/recording session and the total seizure duration was
55.8 � 47.9 s in responders, while in non-responders, these values
were 2.9 � 3.2/recording session and total seizure duration of
131.2 � 142.9 s. These findings indicate that LEV + SB202190 reduced
seizure duration, but not seizure frequency, in both responders and
non-responders compared to vehicle (p < 0.05, Figs. 4 and 5). During
LEV + BQ788 treatment, the mean seizure frequency was 2.2 � 3.3/
recording session and the total seizure duration was 5.3 � 6.7 s in
responders, and in non-responders seizure frequency was 0.7 � 1.5/
recording session and seizure duration was 5 � 11.2 s. These findings
indicate that LEV + BQ788 reduced seizure frequency and seizure
 rats. (A) Representative EEG traces and frequency-power spectral temporal maps.

 (right) and seizure severity (low) during 2 h of recording a day. There is no difference in

ps.



Fig. 4. Representative EEG traces and frequency-power spectral temporal maps demonstrating the effect of LEV and co-administration with SB202190 or BQ788 on

spontaneous seizure activity in epileptic rats.
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duration in both responders and non-responders compared to vehicle
(p < 0.05, Figs. 4 and 5). The withdrawal of BQ788 rebounded seizure
frequency and seizure duration in non-responders to vehicle-treated
levels (p < 0.05, Figs. 4 and 5). Similarly, the withdrawal of LEV
rebounded seizure frequency and seizure duration in responders to
vehicle-treated levels (p < 0.05, Figs. 4 and 5).

3.4. Increases in MDR3 and ETB receptor expression in the

hippocampus of non-responders

To investigate the correlation of PGP, ETB receptor and
p38MAPK expression in the epileptic hippocampus with the
efficacy of LEV, we performed western blot after EEG analysis.
Compared to responders, MDR3 and ETB receptor expression in the
hippocampus was increased to 1.39- and 1.54-fold of responders
(p < 0.05, Fig. 6A and B).

4. Discussion

Pilocarpine is an agonist at muscarinic acetylcholine receptors.
Systemic administration of pilocarpine induces limbic seizures and
SE, which provokes spontaneous, recurrent seizures after a
seizure-free latent period. Pilocarpine in combination with lithium
allows a reduction of the pilocarpine dose required to cause SE, but
no increased mortality [31–33]. Therefore, the pilocarpine and
lithium-pilocarpine model are useful to study epileptogenesis
and AED efficacy for the control of seizures [27,34]. Indeed, Leite
and Cavalheiro [34] used the pilocarpine model to investigate the
anticonvulsant effect of conventional AEDs such as phenobarbital,
carbamazepine and valproate, and reported the usefulness of the
pilocarpine model to evaluate the efficacy of AEDs against complex
partial seizures. In addition, Glien et al. [27] reported that
spontaneous recurrent seizures in the pilocarpine model show
an interindividual variability to LEV, which resembles that in
patients with temporal lobe epilepsy. The present study showed
that 30% of rats were responders to LEV, and that 40% of rats were
non-responders to LEV. Similar to the observation in the present
study, Glien et al. [27] found that 25% in this model were
responders to LEV, 25% were non-responders, and 50% were
variable responders. Therefore, the present data suggest that the
pilocarpine model may be one of the most useful models to
investigate pharmacoresistant epilepsy.

It has been well documented that overexpression or hyper-
activity of PGP may involve the development of pharmacoresistent
epilepsy or the efficacy of AEDs to control seizure activity [3,35,36].
Indeed, MDR1 expression is up-regulated in the human epileptic
brain [37]. In the present study, both MDR1 and MDR3 expression
was increased in the hippocampus of epileptic animals compared
to controls. This discrepancy may be a consequence of the
difference in species between humans and rodents, because
MDR3 is the major form of PGP expression in the murine brain
vessels [38]. Interestingly, the present data revealed that only
MDR3 expression in the hippocampus of non-responders was
higher than those of responders. Although the function or



Fig. 5. The effect of LEV and co-administration with SB202190 or BQ788 on spontaneous seizure activity in epileptic rats. (A) Quantitative values (mean � S.D.) of mean seizure

frequency (left) and total seizure duration (right) during 2 h of recording a day in responders and non-responders. *p < 0.05 vs. responders. (B) Quantitative values (mean � S.D.) of

effect of LEV and co-administration with SB202190 or BQ788 on mean seizure frequency (left) and total seizure duration (right) during 2 h of recording a day in responders and non-

responders. *p < 0.05 vs. vehicle. (C) Quantitative values (mean � S.D.) of seizure severity in responders and non-responders (left) and quantitative values (mean � S.D.) of effect of

LEV and co-administration with SB202190 or BQ788 on seizure severity in responders and non-responders (right). *p < 0.05 vs. responders (left) or *p < 0.05 vs. vehicle (right).
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substrates of MDR3 remain unclear, our findings indicate that up-
regulation of MDR3 expression may play an important role in the
pharmacoresistance to LEV in epileptic rats. The present data also
point to a specific role of PGP over-expression and its hyperactivity
as a limiting factor in epilepsy pharmacotherapy. Thus, inhibition
of PGP expression or its activity may be one of the therapeutic
Fig. 6. PGP, ETB receptor and p38MAPK expression in responders and non-responders. (A) 

responders (N) compared to responders (R). Arabic number indicates an individual anima

expression in non-responders. *p < 0.05 vs. responders.
targets for preventing the development of pharmacoresistent
epilepsy and improving AED therapy.

Because the ET1-ETB receptor axis regulates PGP expression and
transport activity [11–15], we hypothesized that over-expression
of PGP may be one of the undesirable consequences from
prolonged ETB receptor activity through a positive feedback loop
Western blot shows the up-regulation of MDR3 and ETB receptor expressions in non-

l number. (B) Quantitative values (mean � S.E.M.) of PGP, ETB receptor and p38MAPK
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between ET-1 and the ETB receptor following SE [5,23–26]. In the
present study, neither SB202190 nor BQ788 affected the sponta-
neous seizure activity in epileptic rats. The present data also
showed that BQ788 treatment did not affect MDR1, MDR3, ETB

receptor or p38MAPK expression in the hippocampus of control
and epileptic animals compared to vehicle. However, both
LEV + SB202190 and LEV + BQ788 reduced seizure activity in
non-responders to LEV alone. Therefore, our findings indicate that
both BQ788 and SB202190 may enhance the efficacy of LEV by
inhibiting PGP activity rather than its expression, although ETB

receptor or p38MAPK itself may not be involved in ictogenesis in
chronic epilepsy rats.

Recently, we reported that LEV has no protective effect against
SE-induced vasogenic edema formation [39], although LEV has
anti-inflammatory properties [30]. Bauer et al. [40] reported that
tumor necrosis factor-a (TNF-a) induces ET-1 release and action
through ETA and ETB receptors, nitric oxide synthase, protein
kinase C and nuclear factor-kB (NF-kB) and finally increased PGP
expression and transport activity. Similarly, we have reported that
pilocarpine-induced SE results in vasogenic edema via TNF-a/ET-
1-mediated p65-Thr 485 NF-kB phosphorylation [5,41], which is
one of the risk factors in pharmacoresistent epilepsy [42]. In
addition, p38MAPK is one of the downstream signaling molecules
for ET-1-mediated signal transduction [43,44], and p38MAPK
activation increases PGP activity in various cancers [45–47].
Therefore, the inflammatory responses induced by seizure activity
may raise the possibility of the development of refractory epilepsy
via increased PGP expression and/or its activity. With respect to
these previous reports, it is likely that add-on of BQ788 or
SB202190 may enhance the anti-inflammatory properties and AED
efficacy of LEV through the inhibition of ET-1/p38MAPK-mediated
inflammatory signals in the epileptic hippocampus.

Unexpectedly, the present study shows that LEV + SB202190 did
not affect seizure frequency in responders compared to vehicle.
Because p38MAPK involves seizure tolerance (preconditioning),
which is a phenomenon where brief seizures reduce the subsequent
seizure severity [48], the fact that SB202190 had no effect on
responders to LEV may result from the reduction in p38MAPK-
mediated seizure tolerance. Further research would be needed to
elucidate the role of p38MAPK in the regulation of seizure tolerance.

In conclusion, we demonstrated that co-treatment of BQ788
with LEV reduced seizure frequency and duration in chronic
epileptic rats showing no response to LEV alone. In contrast, co-
application of SB202190 decreased seizure duration only. These
findings indicate that the ETB receptor function may involve the
development of pharmacoresistant epilepsy. To the best of our
knowledge, the present study is the first indication of the role of
the ETB receptor in PGP related to refractory seizures. Therefore,
the ETB receptor will be an important therapeutic target for
intractable epilepsy.
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