192 research outputs found

    Revising the observable consequences of slow-roll inflation

    Get PDF
    We study the generation of primordial perturbations in a (single-field) slow-roll inflationary universe. In momentum space, these (Gaussian) perturbations are characterized by a zero mean and a non-zero variance Δ2(k,t)\Delta^2(k, t). However, in position space the variance diverges in the ultraviolet. The requirement of a finite variance in position space forces one to regularize Δ2(k,t)\Delta^2(k, t). This can (and should) be achieved by proper renormalization in an expanding universe in a unique way. This affects the predicted scalar and tensorial power spectra (evaluated when the modes acquire classical properties) for wavelengths that today are at observable scales. As a consequence, the imprint of slow-roll inflation on the CMB anisotropies is significantly altered. We find a non-trivial change in the consistency condition that relates the tensor-to-scalar ratio rr to the spectral indices. For instance, an exact scale-invariant tensorial power spectrum, nt=0n_t=0, is now compatible with a non-zero ratio r0.12±0.06r\approx 0.12\pm0.06, which is forbidden by the standard prediction (r=8ntr=-8n_t). The influence of relic gravitational waves on the CMB may soon come within the range of planned measurements, offering a non-trivial test of the new predictions.Comment: 24 page

    Quality assessment of O3 profiles measured by a state-of-the-art ground-based FTIR observing system

    Get PDF
    Ground-based Fourier Transform Infra-Red (FTIR) measurements are an important component of the global atmospheric monitoring system. Their essential role in validating satellite measurements requires a precise documentation of their quality. Here we present an extensive quality documentation of ground-based FTIR O3 profiles. This is done in the form of theoretical and empirical error estimations. The latter is achieved by an intercomparison with ECC-sonde O3 profiles. The FTIR O3 amounts are obtained by applying the most advanced instrumentation and retrieval strategies and consequently represent the current potential of this remote sensing technique.The FTIR activities are supported by the European Commission and the Deutsche Forschungsgemeinschaft by funding via the projects SCOUT-O3 and GEOMON (contract SCOUT-O3-505390 and GEOMON-036677) and RISOTO (Geschäftszeichen SCHN 1126/1-1), respectively

    Swift heavy ion damage to sodium chloride: synergy between excitation and thermal spikes

    Get PDF
    Systematic data on the effect of irradiation with swift ions (Zn at 735 MeV and Xe at 929 MeV) on NaCl single crystals have been analysed in terms of a synergetic two-spike approach (thermal and excitation spikes). The coupling of the two spikes, simultaneously generated by the irradiation, contributes to the operation of a non-radiative exciton decay model as proposed for purely ionization damage. Using this scheme, we have accounted for the π-emission yield of self-trapped excitons and its temperature dependence under ion-beam irradiation. Moreover, the initial production rates of F-centre growth have also been reasonably simulated for irradiation at low temperatures ( < 100 K), where colour centre annealing and aggregation can be neglected

    Light Emission of Self-Trapped Excitons from Ion Tracks in Silica Glass: Interplay between Auger Recombination, Exciton Formation, Thermal Dissociation, and Hopping

    Get PDF
    The initial luminescence yield of amorphous silica under ion irradiation has been studied at temperatures between 30 and 100 K, using swift ions of different masses and energies (3 MeV H, 3.5 MeV He, 19 MeV Si and 19 MeV Cl). The intensity of the 2.1 eV emission band, ascribed to the intrinsic recombination of self-trapped excitons (STEs), has been found to vary systematically with ion mass, energy and irradiation temperature. A detailed model has been developed to quantitatively describe those variations in terms of the competition between non-radiative Auger recombination, STE formation, STE thermal dissociation, and subsequent STE hopping and capture at non-radiative sinks. The model, which uses a thermal spike approach to describe the effect of swift ion bombardment, is found to quantitatively predict the experimental data without adjustable parameters. It provides new insights into the interactions of carriers in an ion track and the behavior of the luminescence emissions during ion irradiation (ionoluminescence). The model is found to predict the correct temperature dependence of the yield if an activation energy for STE thermal migration of 0.12 eV is assumed, which is in good agreement with values previously reported

    Defect Generation Mechanisms In Silica Under Intense Electronic Excitation By Ion Beams Below 100 K: Interplay Between Radiative Emissions

    Get PDF
    Ion-beam effects on bulk silica at low temperature have been studied with the aim of understanding the routes and mechanisms leading from the initial generation of free carriers and self-trapped excitons (STEs) to the production of two stable defect structures in irradiated silica, non-bridging oxygen hole centers (NBOHCs) and oxygen deficient centers (ODCs). Ion beam induced luminescence (ionoluminescence, IL) spectra were obtained using 3 MeV H, 3.5 MeV He, 19 MeV Si, and 19 MeV Cl ions and a range of cryogenic irradiation temperatures from 30 to 100 K. The kinetic behavior of three emission bands centered at 1.9 eV (assigned to NBOHCs), 2.1 eV (assigned to the intrinsic decay of STEs), and 2.7 eV (assigned to ODCs) reveal the physical origin of these emissions under intense electronic excitation. The creation of NBOHCs is governed by a purely electronic mechanism. The kinetics curve of the NBOHC band shows two main contributions: an instantaneous (beam-on) contribution, followed by a slower fluence- and temperature-dependent process correlated with the concentration of STEs. The beam-on contribution is proportional to deposited ionization energy. The growth of the ODC band is linear in fluence up to around 2 x 1012 cm−2. The growth rate is independent of temperature but proportional to the number of radiation-induced oxygen vacancies per ion, showing, unambiguously, that the 2.7 eV emission can be associated with ODCs created in an excited state

    Computing Black Hole entropy in Loop Quantum Gravity from a Conformal Field Theory perspective

    Get PDF
    Motivated by the analogy proposed by Witten between Chern-Simons and Conformal Field Theories, we explore an alternative way of computing the entropy of a black hole starting from the isolated horizon framework in Loop Quantum Gravity. The consistency of the result opens a window for the interplay between Conformal Field Theory and the description of black holes in Loop Quantum Gravity.Comment: 9 page

    Real-Time Identification of Oxygen Vacancy Centers in LiNbO₃ and SrTiO₃ during Irradiation with High Energy Particles

    Get PDF
    Oxygen vacancies are known to play a central role in the optoelectronic properties of oxide perovskites. A detailed description of the exact mechanisms by which oxygen vacancies govern such properties, however, is still quite incomplete. The unambiguous identification of oxygen vacancies has been a subject of intense discussion. Interest in oxygen vacancies is not purely academic. Precise control of oxygen vacancies has potential technological benefits in optoelectronic devices. In this review paper, we focus our attention on the generation of oxygen vacancies by irradiation with high energy particles. Irradiation constitutes an efficient and reliable strategy to introduce, monitor, and characterize oxygen vacancies. Unfortunately, this technique has been underexploited despite its demonstrated advantages. This review revisits the main experimental results that have been obtained for oxygen vacancy centers (a) under high energy electron irradiation (100 keV-1 MeV) in LiNbO3, and (b) during irradiation with high-energy heavy (1-20 MeV) ions in SrTiO3. In both cases, the experiments have used real-time and in situ optical detection. Moreover, the present paper discusses the obtained results in relation to present knowledge from both the experimental and theoretical perspectives. Our view is that a consistent picture is now emerging on the structure and relevant optical features (absorption and emission spectra) of these centers. One key aspect of the topic pertains to the generation of self-trapped electrons as small polarons by irradiation of the crystal lattice and their stabilization by oxygen vacancies. What has been learned by observing the interplay between polarons and vacancies has inspired new models for color centers in dielectric crystals, models which represent an advancement from the early models of color centers in alkali halides and simple oxides. The topic discussed in this review is particularly useful to better understand the complex effects of different types of radiation on the defect structure of those materials, therefore providing relevant clues for nuclear engineering applications

    Quality assurance of a solar UV network in the Antarctic

    Get PDF
    Póster elaborado para la 27th General Assembly of the European Geophysical Society celebrada en Niza los días 21-26 de abril de 200

    Continuous quality assessment of atmospheric water vapour measurement techniques: FTIR, Cimel, MFRSR, GPS, and Vaisala RS92

    Get PDF
    At the Izaña Observatory, water vapour amounts have been measured routinely by different techniques for many years. We intercompare the total precipitable water vapour (PWV) amounts measured between 2005 and 2009 by a Fourier Transform Infrared (FTIR) spectrometer, a Multifilter Rotating Shadow-band Radiometer (MFRSR), a Cimel sunphotometer, a Global Positioning System (GPS) receiver, and daily radiosondes (Vaisala RS92). The long-term characteristics of our study allows a reliable and extensive empirical quality assessment of long-term validity, which is an important prerequisite when applying the data to climate research. We estimate a PWV precision of 1% for the FTIR, about 10% for the MFRSR, Cimel, and GPS (when excluding rather dry conditions), and significantly better than 15% for the RS92 (the detection of different airmasses avoids a better constrained estimation). We show that the MFRSR, Cimel and GPS data quality depends on the atmospheric conditions (humid or dry) and that the restriction to clear-sky observations introduces a significant dry bias in the FTIR and Cimel data. In addition, we intercompare the water vapour profiles measured by the FTIR and the Vaisala RS92, which allows the conclusion that both experiments are able to detect lower to upper tropospheric water vapour mixing ratios with a precision of better than 15%.The FTIR activities are supported by the European Commission and the Deutsche Forschungsgemeinschaft by funding via the projects SCOUT-O3 and GEOMON (contract SCOUT-O3-505390 and GEOMON-036677) and RISOTO (Geschaftszeichen SCHN 1126/1-1), respectively

    Verificación de la isotropía del hormigón proyectado por vía húmeda

    Get PDF
    It is well known that there are differences between the fresh mix concrete and the placed concrete sprayed using dry or wet-mix process. Because of that, the characterization of such material is carried out in cores extracted parallel to the spray direction from sample panels. However, in many applications (e.g. tunnel lining), considerable compressive stresses appear along the transversal direction. In this paper different spayed concretes are evaluated. It was observed that the values of compressive strength and modulus of elasticity were different depending on the direction of measurement. These differences are related to a preferential orientation of the coarse aggregate due to the characteristics of the casting process. Rather than applying classic empirical methods, the concrete mixes used in this study were designed according to a new proportioning method based on the difference between the composition of the fresh mix concrete and the placed concrete.Dadas las diferencias entre el hormigón de partida y el colocado, la evaluación de las propiedades de un hormigón proyectado, por vía húmeda o seca, se realiza mediante la extracción de testigos, evaluándose las propiedades mecánicas o deformacionales de forma uniaxial, según la dirección de la proyección. No obstante, son muchas las aplicaciones, como es el caso del sostenimiento en túneles, en las que esta disposición no representa la forma de trabajo principal del hormigón en la estructura. En el presente artículo se ha verificado que pueden existir diferencias en la resistencia a compresión y módulo de elasticidad del hormigón proyectado por vía húmeda, según la dirección de evaluación. Éstas van ligadas a la orientación que sufre el árido grueso como consecuencia de la puesta en obra del hormigón. Asimismo, el hormigón proyectado del estudio se ha dosificado utilizando como procedimiento de dosificación una propuesta metodológica, basada en las diferencias entre hormigón colocado y de partida, en contraposición a los métodos habituales de dosificación que se fundamentan en la experiencia
    corecore