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Abstract: Oxygen vacancies are known to play a central role in the optoelectronic properties of oxide
perovskites. A detailed description of the exact mechanisms by which oxygen vacancies govern such
properties, however, is still quite incomplete. The unambiguous identification of oxygen vacancies
has been a subject of intense discussion. Interest in oxygen vacancies is not purely academic. Precise
control of oxygen vacancies has potential technological benefits in optoelectronic devices. In this
review paper, we focus our attention on the generation of oxygen vacancies by irradiation with high
energy particles. Irradiation constitutes an efficient and reliable strategy to introduce, monitor, and
characterize oxygen vacancies. Unfortunately, this technique has been underexploited despite its
demonstrated advantages. This review revisits the main experimental results that have been obtained
for oxygen vacancy centers (a) under high energy electron irradiation (100 keV–1 MeV) in LiNbO3,
and (b) during irradiation with high-energy heavy (1–20 MeV) ions in SrTiO3. In both cases, the
experiments have used real-time and in situ optical detection. Moreover, the present paper discusses
the obtained results in relation to present knowledge from both the experimental and theoretical
perspectives. Our view is that a consistent picture is now emerging on the structure and relevant
optical features (absorption and emission spectra) of these centers. One key aspect of the topic
pertains to the generation of self-trapped electrons as small polarons by irradiation of the crystal
lattice and their stabilization by oxygen vacancies. What has been learned by observing the interplay
between polarons and vacancies has inspired new models for color centers in dielectric crystals,
models which represent an advancement from the early models of color centers in alkali halides
and simple oxides. The topic discussed in this review is particularly useful to better understand the
complex effects of different types of radiation on the defect structure of those materials, therefore
providing relevant clues for nuclear engineering applications.

Keywords: lithium niobate; strontium titanate; self-trapped electrons; polarons; oxygen vacancies;
defects; luminescence

1. Introduction

Oxides constitute a large family of dielectric compounds that appear in many areas of
science and technology from nanoscience to geophysics and from CMOS (Complementary
Metal-Oxide-Semiconductor) transistors to astronautics. An important class of oxides are
the perovskites, such as cubic strontium titanate (SrTiO3) and lithium niobate (LiNbO3),
having a distorted perovskite, with a trigonal (ilmenite-like) structure. This later material
is a popular example of a photonic material, mainly due to its combination of ferroelectric,
photovoltaic, and nonlinear optical properties. In particular, it is the reference material for
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second-harmonic generation and more specifically for charge transport (photorefractive)
nonlinearities [1]. This latter property has received renewed attention in view of its
function in novel applications. For example, LiNbO3-functionalized surfaces have been
used for trapping and manipulating nanoparticles (photovoltaic tweezers) [2]. SrTiO3
and other cubic perovskites offer outstanding potential for electronic, optoelectronic, and
photocatalytic devices and constitute the basis for the new growing field known as complex
oxide-based microelectronics [3–7].

This review is mostly concerned with oxygen vacancies in LiNbO3 and SrTiO3 as
representative examples of distorted and cubic perovskites, although some brief excursions
into related materials are occasionally made. The oxygen vacancy centers denoted by F+

and F represent an oxygen monovacancy with one trapped electron and an oxygen mono-
vacancy with two trapped electrons, respectively [8]. These two centers are considered to
be important point defects for many optical and transport properties and, therefore, for
optoelectronic applications of LiNbO3 and SrTiO3. We believe that a comparative analysis
of these two materials is fruitful and offers a good opportunity to examine, in depth, the
role of structure on the properties and behavior of those vacancy defects.

In the basic perovskite ABO3 structure, A is a monovalent or divalent ion, and B a
tetravalent or pentavalent ion. The structure can be described as an arrangement of oxygen
BO6 octahedra, enclosing a transition metal ion B. It is useful to regard those octahedra as
the basic structural units governing the electronic and optical behavior. Typical structures
for SrTiO3 and LiNbO3 crystals are shown in Figure 1, illustrating the different octahedral
arrangements. These basic structures allow us to understand many of the basic properties
of perovskites. For perovskites, such as SrTiO3, the oxygen octahedra are linked together at
the oxygen vertices. For LiNbO3, adjacent octahedra share a common face. The occurrence
of one or other structure is related to the radii of ions A and B. Indeed, the Goldschmidt
tolerance factor, which incorporates the ionic radii, is commonly used to predict the most
stable crystal class for a particular perovskite. Note also that several phase transitions
have been observed for some of these materials. A key difference between LiNbO3 and the
perovskites is that the ABO3 phase of LiNbO3 is stable over a wide range of Li/Nb ratios or
stoichiometries. The usual or congruent composition corresponds to [Li]/[Nb] = 0.945, but
other stable stoichiometries [9] can be also prepared. A large number of physical properties
have been found to depend on stoichiometry, such as the optical absorption edge [10,11]
and radiation-excited luminescent emission [12]. A possible reason for the wide range of
stable stoichiometries in LiNbO3 has to do with the close similarities of ionic radii of the
host ions (0.68

.
A for Li+ and 0.69

.
A for Nb5+). In line with the central importance of the

structural oxygen octahedra, the electronic band structure of LiNbO3 [13], SrTiO3 [14], and
other oxide perovskites has some general features. The valence band (VB) is essentially
associated with p-oxygen orbitals, whereas the conduction band (CB) is constituted by
s-oxygen orbitals and d-orbitals of the B site transition metals. We will see, however, that
the d-orbitals in the conduction band (CB) also play a key role in our understanding of
color centers in oxide perovskites. The band gap, separating the oxygen p and s orbitals,
lies in the range of 3 eV.

The detailed structure of defective crystals in perovskite crystals (particularly LiNbO3)
is a key piece of information to understand most fundamental and functional properties
of those materials. However, the generation, identification, and characterization of the
defect centers is a difficult subject and involves a complex set of challenges that has been
a matter of controversy. A number of works have been dealing with oxygen vacancy
models [15–28]. A large variety of experimental techniques have been used to generate and
investigate oxygen vacancy centers. Most of these techniques use thermochemical meth-
ods (e.g., oxidation reduction treatments) or irradiation with different energetic particles.
Thermochemical methods have been employed in LiNbO3 [15,16], but they rely on subtle
thermodynamic models whose parameters are not easy to analyze. Different models have
been proposed and discussed to understand the defective structure of reduced LiNbO3
samples. A very authoritative and elaborated study of those models is given in [29–31].
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The defective structure strongly depends on the details of the thermal treatments and the
surrounding (reducing) atmosphere and is not the objective of the present work. The major
goal of the present work is to focus on the experiments that have been carried out for
the production and characterization of oxygen vacancies by high energy particles, either
electrons [32,33] or ions [25,26,34].
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Figure 1. The trigonal ilmenite-like structure of LiNbO3 (a), and the cubic perovskite structure of SrTiO3 (b). Schematics
show the stacking of oxygen octahedra. In (a), note the tilting (and rotation) of the octahedral units [NbO6] along the c-axis.
In (b), the [TiO6] octahedral units are clearly observed. (a) has been adapted from Xue et al. [35], Copyright (2003), with
permission from Elsevier; (b) was generated using Vesta software [36].

These methods rely on the production of atomic displacements induced by momentum
transfer during elastic collisions between the fast projectile particles and the atoms of
the host crystal lattice. The analysis of these experiments is performed by using well-
established models and available software packages [37]. A major experimental advantage
of this approach is that the irradiation parameters (energy and range of the particles) can be
easily modified and, therefore, the deposited energy and the effects of the damage can be
tailored. Although the use of light ions, such as H and He, has been a common tool in the
past [38], a growing number of studies has employed swift-heavy ions. This parallels the
increased availability of laboratories with swift-heavy ion irradiation capabilities [25,26,34].
Energetic ions have the advantage of producing a broad electronic excitation spectrum that
permits simultaneous access to the excited levels of all defect centers. In fact, a relevant
outstanding feature of such irradiation experiments is that the production and detection of
defects can be performed in situ and in real time. Unfortunately, despite these advantages,
the scientific community is often not aware of the potential of the method.

Our review focuses on two representative oxide materials: (a) LiNbO3, which is an
example of ilmenite-like structure (distorted perovskite), a subject featured in the present
issue of Crystals, and (b) SrTiO3, a technologically important perovskite that is cubic at
room temperature (RT), which may serve as an important structure for comparison. In
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both cases, significant experimental and theoretical progress has been achieved over the
past few years.

The focus of the present review is on the production, optical identification, and
electronic structure of oxygen vacancy centers produced by high-energy particles in LiNbO3
and SrTiO3. One important theme is the role of oxygen vacancies assumed as the main traps
for electronic carriers through self-trapped electron (polaron) states and the formation of
F-type centers. Our understanding of the self-trapping of electronic charges (both electrons
and holes) and the further creation of polaron states, predicted by Landau [39], goes back
to pioneering works by Schirmer and coworkers on LiNbO3 [30,40], as well as Stoneham
and coworkers in oxides [41,42]. In the case of insulators with high dielectric constants,
it is often observed that free electronic carriers self-trap in the perfect lattice due to the
induced local polarization, and the subsequent lowering of the energy. Oxygen vacancies
and polarons turn out to be closely related and lie at the heart of this discussion. This
review examines classic works in the literature, as well as very recent reports, to provide
an up-to-date understanding. As a consequence of the extensive work performed on a
large variety of oxide perovskites, and the new high-energy irradiation experiments, a
satisfactory picture for the structure and optical behavior of oxygen vacancies in these
materials is possibly emerging. It is adequate to point out that, at variance with previous
investigations, the high-energy irradiation experiments are performed in situ (real-time),
avoiding the processes that take place after every irradiation. Therefore, we consider it an
opportune moment to present this review centered on the possible generation of oxygen
vacancies in LiNbO3 and SrTiO3. It is expected that the comparative discussion between
these two representative materials may provide a further impetus for progress in the field.

2. Oxygen Vacancy Centers in LiNbO3 Created by High-Energy Electron Irradiation:
Real Time in situ Detection of the Induced Optical Absorption

LiNbO3 is a reference inorganic material for nonlinear optical applications, particu-
larly in relation to charge transport (photorefractive) nonlinearities. The experiments to
be discussed here involve the measurement of the optical absorption spectra induced by
high-energy electron irradiation up to 2 MeV on congruent samples [32]. In these pioneer
experiments, a sample is sandwiched inside a small double oven situated in a vacuum irra-
diation chamber, which allows for enabling in situ measurement of the optical absorption
spectrum in real time. For low-electron energies, a low intensity, broad, and structureless
absorption spectrum is produced. However, for higher energies (>0.3 MeV), a more well-
defined absorption spectrum develops with a broad peak at about 2.6 eV (480 nm). The
spectrum has been now decomposed into three main Gaussian components centered at 1.7,
2.6, and 3.2 eV, as illustrated in Figure 2. The component at 1.7 eV (730 nm) was previously
associated with mobile small electron polarons such as Nb4+ [40] through electron spin
resonance (ESR) measurements after X-ray irradiation at 20 K, and has been also detected
in thermally reduced samples [15,16]. These self-trapped carriers such as Nb4+ constitute a
localized electronic defect that can migrate through the lattice by hopping between nearby
lattice sites [43]. In order to investigate the structural origin of the absorption band cen-
tered at 2.6 eV, researchers plotted its height as a function of the electron beam energy
(see reference for further details). The optical density as a function of electron irradiation
showed a threshold at an energy of 1.1 MeV (Figure 3); thus, in addition to the energy
loss in 0.9 mm, a threshold value of 0.3 MeV can be deduced (more details can be found
elsewhere [32]). Considering the energy transfer between the high-energy electrons and
the LiNbO3 lattice, the sharp threshold was associated with displacement of oxygen atoms
by elastic electron–atom collisions. The oxygen displacement energy was determined to be
53 eV, which is similar to the values found for other oxides such as MgO (60 eV), MgAl2O4
(59 eV), and Al2O3 (70 eV). It is worth noting that similar absorption spectra have also
been obtained after thermal reduction [15,16] where the generation of oxygen vacancies
has not been demonstrated and alternative models have been invoked [29,30,44]. Pending
of ESR experiments and refined theoretical calculations, a main tentative conclusion is
that electron irradiation experiments can provide clear and unequivocal evidence for the
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generation and optical behavior of oxygen vacancy centers, i.e., F+ and F centers. Similar
irradiation experiments to those reported on congruent samples were also carried out on
stoichiometric samples (Li/Nb = 1) [33]. The generated absorption spectrum is similar in
both cases, indicating that it is essentially independent of the structure associated with the
non-stoichiometry.
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Figure 2. Absorption spectra and Gaussian decomposition obtained for congruent LiNbO3 irradiated
with high-energy electrons at various temperatures (a) 15 ◦C, (b) 100 ◦C, (c) 250 ◦C. This figure has
been adapted from Hodgson et al. [32], Copyright (1987), with permission from Elsevier.

In the light of the available information presented in the section on SrTiO3 as well as
on other perovskites, one could associate the measured absorption bands to one or two
Nb4+ small polarons trapped at the vacancy site, respectively. This model is rather different
from the earlier one used to describe color centers in alkali halides, where the electrons are
deeply trapped in vacancies. This is the model described in the next section on high-energy,
ion-irradiated SrTiO3. In order to explore the validity of such interpretation for F-type
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centers in LiNbO3, researchers performed complementary experiments to observe the effect
of heating on the absorption spectra (Figure 4). It was shown that heating in the range
RT-250 ◦C caused a clear conversion of the 2.6 eV band into the 1.7 eV band. This behavior
was reversible on cooling the samples. It was, then, concluded that F+-centers (one electron
trapped at the vacancy) and F-centers (two electrons trapped at the vacancy) might be
reasonable candidates for the 3.2 eV and 2.6 eV bands, respectively. The process can be
summarized as follows. With the addition of thermal activation energy, the Nb4+ polarons
became untrapped from the vacancy sites, giving rise to its 1.7 eV band and causing the F
to F+ conversion and the generation of free oxygen vacancies. The behavior was essentially
reversible on cooling, clearly suggesting that the polarons trapped again at the vacancies. In
other words, vacancies and polarons should stay close together so that the balance between
the centers at 1.7 eV and 2.6 eV and the generated concentration of vacancies appear to
be essentially governed by thermodynamic laws. The optical absorption bands of the
F-type color centers would involve the transition between an in-gap ground state to excited
Nb4+ d-levels residing in the conduction band (CB) [17]. Although, ESR experiments and
theoretical calculations have yet to corroborate this model, the available data suggest that
these color centers involve small Nb4+ polarons that are trapped in the vicinity of oxygen
vacancies and form part of their electronic structure. Anyhow, one should point out that
alternative models for the optical absorption spectra of the irradiated (as well as reduced)
crystals have been discussed in terms of polaron and bipolaron states [30].
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Figure 3. Normalized height of the optical absorption band at 2.6 eV as a function of the electron
beam energy for congruent LiNbO3. This figure has been adapted from Hodgson et al. [32], Copyright
(1987), with permission from Elsevier.

It is encouraging to note that similar high-energy electron irradiation experiments
have been also carried out on KNbO3 (a cubic/orthorhombic perovskite) [45]. The ab-
sorption spectra are qualitatively and quantitatively similar to those obtained for LiNbO3,
confirming the key role of the NbO6 octahedron in the optical response. Moreover, the
experimental data also show a sharp threshold in optical density as a function of the
electron energy in accordance with the impact character of the process. In our view, all
these results demonstrate the potential of high-energy electron irradiation experiments to
introduce oxygen vacancies in a reliable way and allow for their real-time characterization.
These results could not be, in principle, achieved by any alternative methods.

At this stage, one may ask about the possible luminescence emissions associated with
those color centers in LiNbO3. They might provide additional insights on the responsible
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optical transitions, as well as on the electronic energy levels. Early luminescence exper-
iments under X-ray irradiation showed a main emission band at around 2.9 eV, but it
was found to be independent of irradiation dose [46]. Therefore, this emission was not
ascribed to oxygen vacancies or any extrinsic defects, but to intrinsic electron–hole (e-h)
recombination. The reason may lie in the fact that, after generation of free electrons (e)
and holes (h) by irradiation, those pairs very rapidly couple together and form relaxed
self-trapped excitons (STEs) on the sub-nanosecond time scale. Moreover, the fraction
of these STEs appears to be very high (close to 1), and thus this recombination channel
appears dominant.
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3. Oxygen Vacancy Centers in Cubic SrTiO3 under High-Energy Ion Beam Irradiation:
Real-Time Luminescence Emissions

A large fraction of the recent reports on oxide perovskites is related to SrTiO3 [28],
where the recent experimental and theoretical information has improved our understanding
of the structure and behavior of oxygen vacancies. They are considered to be responsible
for some outstanding properties of SrTiO3 such as an insulating metal transition, supercon-
ductive behavior, and photocatalytic properties [3,47]. Therefore, in line with the objectives
of this review, we now discuss recent experimental data obtained from irradiation experi-
ments on SrTiO3 using high-energy heavy-ion beams [25,26,48]. The use of such ions has
dramatically increased in recent years. For high-energy, high-mass ions, the electronic
stopping power is large and dominates the total stopping power. This large electronic
stopping power gives rise to specific types of lattice damage and amorphization [34,49].
In contrast with the experiments in LiNbO3 discussed in a previous section, which relied
on absorbance spectra, the main detection technique with the heavy ion experiments has
been luminescence. One should note that ion beam induced luminescence or ionolumi-
nescence experiments are unique in their ability to combine high sensitivity with high
spectral resolution. In such a way, the experiments offer a complementary picture to those
ones described previously in Section 2 for LiNbO3 and offer an experimental approach for
the future.

The light emission spectra of SrTiO3 under ion beam irradiation is complex and
includes several overlapping bands, as shown in Figure 5, with peaks located at around
2.0, 2.5, and 2.8 eV [25–27,48]. Their relative importance strongly depends on the mass and
energy of the projectile ions, which determines the electronic excitation density deposited
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into the material, as well as on the irradiation temperature. Moreover, heavy ions, may
also introduce structural defects within the material. While these additional variables
can complicate the interpretation, they also act as useful knobs to turn that allow the
experimenter to gain insight into the nature of the luminescence centers. Recently, a detailed
study of the luminescence emission under irradiation with a variety of high-energy heavy
ions has provided unequivocal evidence supporting the assignment of the 2.0 eV emission
band to Ti3+ polarons trapped at isolated oxygen vacancies [25,26]. In fact, the data in
Figure 6 show a strong correlation between the initial growth rate of the 2.0 eV band and
the production rate of isolated vacancies with irradiation fluence, as calculated by SRIM
(The Stopping and Range of Ions in Matter) simulation code [37]. Density functional theory
(DFT) calculations [50] indicate that the corresponding luminescence transition connects
an in-gap level, having a d-orbital character, to Ti3+ d-levels located in the conduction
band (CB). Note the similarity of this transition to the in-gap d-orbital to CB d-orbital Nb4+

transition associated with F-centers in electron irradiated LiNbO3. One should note that
X-ray irradiation of SrTiO3, which does not cause lattice damage by impact collisions,
does not induce the red emission associated to the proposed oxygen vacancies [51]. A
schematic of the electronic structure of the oxygen vacancy center is depicted in Figure 7.
The 2.0 eV band has not been often observed with pulsed laser excitation partly due to
the difficulty of reaching the upper d-levels in the conduction band (CB) with a narrow
spectral width excitation source. Other theoretical calculations have dealt with this complex
problem [23,52,53], and aside from the technical details, they seem to lend support to the
argument that F-type centers are small Ti3+ electron polarons trapped at oxygen vacancies.
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Figure 5. Luminescence emission spectra and Gaussian band components (centered at 2.0, 2.5, and
2.8 eV) of SrTiO3 obtained under irradiation with several high-energy projectile ions and energies at
several temperatures (100 K, 170 K and RT, see labels). Irradiation with 3 MeV H (a–c) and 15 MeV Si
(d–f) ions have been selected to show the complexity of overlapping emission bands. This figure has
been adapted from Crespillo et al. [27].
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Figure 6. Normalized initial growth rate of the 2.0 eV emission band in SrTiO3, associated with
isolated oxygen vacancies, as a function of the vacancy production rate calculated by the SRIM
code [37] under irradiation with several high-energy ions and energies (see labels). A clear linear
correlation is observed for all the ions at both temperatures. This figure has been adapted from
Crespillo et al. [25], Copyright (2018), with permission from Elsevier.
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Figure 7. Schematics of the structure and electronic levels for the oxygen vacancy centers in SrTiO3.
Possible mechanisms of the electronic processes involving the electron polaron (Ti3+) trapped adjacent
to oxygen vacancies. The transition inside the TiO6 octahedron involving the excited (t2g) and ground
(eg) levels gives rise to the 2.0 eV red luminescence band. This figure has been adapted from
Crespillo et al. [25], Copyright (2018), with permission of Elsevier.

Unfortunately, ESR measurements have not yet been able to provide a detailed map
for the electronic structure of the oxygen vacancy centers. Nevertheless, it may be useful
to comment on the detection by ESR of Ta4+-polarons in KTaO3 as a consequence of light
irradiation with energies close to, but above, the band gap [19]. Various Ta centers have
been identified and associated with oxygen vacancies. These centers break the cubic
symmetry and behave as symmetry-breaking defects that are able to induce a local polar
cluster at low enough temperatures (<50 K). They are responsible for second-harmonic
generation (SHG) and first-order Raman scattering, among other effects. Consequently,
the model derived from the ESR data indicates that the Ta4+ centers are located on ions
nearest to the oxygen vacancy. We expect a similar defect structure in SrTiO3 and LiNbO3.
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The centers behave as shallow electron donors with ground state energy levels close to the
bottom of the conduction band (CB), around 26 meV.

4. Summary and Conclusions

From the results discussed in this review, detailed optical information has been ob-
tained, which may contribute to understanding of the occurrence and behavior of oxygen
vacancy centers in distorted (LiNbO3) and cubic (SrTiO3) perovskites. Irradiations with
high-energy particles have provided real-time in situ information about their optical fea-
tures. In particular, absorption bands in LiNbO3 (1.7, 2.6, and 3.2 eV) and luminescence
emissions (2.0 eV) in SrTiO3 have been obtained under electron and ion beam irradiation,
respectively. These spectral features can be used for the identification of the responsible
centers and for monitoring their evolution and kinetics. It is important to mention that us-
ing these in situ techniques, it is possible to increase the concentration of structural defects
and simultaneously monitor the optical response, thereby allowing the experimenter to
associate optical spectra with lattice defect centers.

These techniques lend evidence that electrons are trapped as small polarons at host
cation sites close to oxygen vacancies, although additional work is still needed. The
absorption and emission bands have been ascribed to optical transitions between in-gap
levels and levels within the conduction band (CB) associated with the polaron (transition
metal) states. The joint analysis of these experiments together with available theoretical
calculations has helped form a reasonable (although incomplete) picture of the electronic
structure for oxygen vacancy centers in oxide perovskites. For LiNbO3, the experimental
data on high-energy electron irradiations have shown a link between the displacement
of oxygen atoms and the occurrence of these optical transitions, confirming that oxygen
vacancies act as efficient traps for small polarons. There are still a number of pending
problems to be solved, such as determining the precise location of the corresponding
electronic energy levels within the bandgap. This is not an easy task due to the many body
nature of the phenomena and the need to simultaneously characterize and understand
structural disorder and carrier dynamics. A specific feature to LiNbO3 is the role that
stoichiometry plays. The wide range of Li/Nb ratios would add an additional variable to
the problem. Nevertheless, the relative insensitivity of the optical behavior to that ratio
seems to reinforce the conclusion that the main electronic and optical behavior of ABO3
perovskites is dominated by the basic octahedral BO6 units.

As to future trends in the field, one should remark that the surfaces of perovskites
have a great and largely unexplored potential, particularly LiNbO3. In the area of func-
tional materials, the surface of LiNbO3 is a fertile area. Better knowledge of the surface
structure and its properties (including oxygen vacancies) [22,52] would offer the possibility
of nanoscale devices, molecular detection, and efficient catalysts [54], among other applica-
tions. This remark is of special relevance in relation to real-time operation of optoelectronic
(photovoltaic) tweezers in LiNbO3 and will advance our understanding of the trapping
and untrapping cycles during their operation [55]. Furthermore, recent publications can be
found in the literature showing potential applications in neuromorphic computing through
the production of oxygen vacancies in LiNbO3 thin films by Ar+ irradiation [56].
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