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We study the generation of primordial perturbations in a (single-field) slow-roll inflationary Universe.

In momentum space, these (Gaussian) perturbations are characterized by a zero mean and a nonzero

variance �2ðk; tÞ. However, in position space the variance diverges in the ultraviolet. The requirement of a

finite variance in position space forces one to regularize �2ðk; tÞ. This can (and should) be achieved by

proper renormalization in an expanding Universe in a unique way. This affects the predicted scalar and

tensorial power spectra (evaluated when the modes acquire classical properties) for wavelengths that

today are at observable scales. As a consequence, the imprint of slow-roll inflation on the cosmic

microwave background anisotropies is significantly altered. We find a nontrivial change in the consistency

condition that relates the tensor-to-scalar ratio r to the spectral indices. For instance, an exact scale-

invariant tensorial power spectrum, nt ¼ 0, is now compatible with a nonzero ratio r � 0:12� 0:06,

which is forbidden by the standard prediction (r ¼ �8nt). The influence of relic gravitational waves on

the cosmic microwave background may soon come within the range of planned measurements, offering a

nontrivial test of the new predictions.
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I. INTRODUCTION AND SUMMARY

Inflation [1] provides a natural solution to the horizon
and flatness problems of the hot big-bang cosmology. A
sufficiently long period of rapid expansion can explain the
large scale homogeneity, isotropy, and flatness of our
visible Universe. Inflation also provides a quantitative
explanation [2] to account for the origin of small inhomo-
geneities in the early Universe. These inhomogeneities are
responsible for the structure formation in the Universe and
for the anisotropies present in the cosmic microwave back-
ground (CMB), which were first detected by the COBE
satellite and further analyzed by the WMAP satellite [3].
The potential-energy density of the inflaton field is as-
sumed to cause the inflationary accelerated expansion,
and the amplification of its quantum fluctuations and those
of the metric are inevitable consequences in an expanding
Universe [4]. These fluctuations acquire classical proper-
ties in the inflationary period and provide the initial con-
ditions for classical cosmological perturbations after the
big bang. The detection of the effects of primordial tenso-
rial metric fluctuations (gravitational waves) in future
high-precision measurements of the CMB anisotropies
will serve as a highly nontrivial test of the inflationary
paradigm and to constrain specific models. Therefore, it is
particularly important to scrutinize the predictions of in-
flation for the tensorial and scalar power spectra. In this

respect, it was pointed out in [5] (see also [6]) that quantum
field renormalization significantly modifies the amplitude
of quantum fluctuations, and hence the corresponding
power spectra, in de Sitter inflation. The analysis was
further improved in [7] (see also the essay [8]) to under-
stand how the basic testable predictions of (single-field)
slow-roll inflation could be affected by quantum field
renormalization. In this work we further study this issue,
improve the technical analysis, and provide a more com-
plete and robust discussion of how the observable conse-
quences of inflation are altered when quantum field
renormalization is taken into account.
Let us briefly summarize the logic of our approach. Let

us assume that ’ð ~x; tÞ represents a perturbation obeying a
free field wave-equation on the inflationary background
ds2 ¼ �dt2 þ a2ðtÞd~x2, where aðtÞ is a quasi-exponential
expansion factor (aðtÞ � eHt). At the quantum level, this
field is expanded as

’ð ~x; tÞ ¼ 1

ð2�Þ3=2
Z

d3k½’kðtÞa ~ke
i ~k ~x þ ’�

kðtÞay~k e�i ~k ~x�;
(1.1)

where the creation and annihilation operators satisfy the

canonical commutation relation ½a ~k; a
y0
~k
� ¼ �3ð ~k� ~k0Þ.

The mode functions ’kðtÞ are required to satisfy the adia-
batic condition (see, for instance, [9]). The power spectrum
for this perturbation,�2

’ðk; tÞ, is usually defined in terms of

the Fourier transform of the variance of the field [10,11]

h’̂ ~kðtÞ’̂y
~k0
ðtÞi ¼ �3ð ~k� ~k0Þ 2�

2

k3
�2

’ðk; tÞ; (1.2)
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where ’̂ ~kðtÞ � ’kðtÞa ~k. These modes describe a perturba-

tion field characterized, in momentum space, by a zero
mean h’̂ ~kðtÞi ¼ 0 and the variance (1.2). The advantage of

working in momentum space resides in the fact that differ-
ent modes fluctuate independently of each other, as explic-
itly displayed by the presence of the delta function in (1.2).
This way, the quantum field is regarded as an infinite

collection of oscillators, each with a different value of ~k.
In position space the perturbation is also characterized by a
zero mean h’ð ~x; tÞi ¼ 0 and a variance (or dispersion)

h’2ð ~x; tÞi ¼ 1

ð2�Þ3
Z

d3kd3k0h’̂ ~kðtÞ’̂y
~k0
ðtÞieið ~k� ~k0Þ ~x; (1.3)

which, due to spatial homogeneity, turns out to be inde-
pendent of ~x. This variance is formally related to the power
spectrum by

h’2ð ~x; tÞi ¼
Z 1

0

dk

k
�2

’ðk; tÞ: (1.4)

As is well known in quantum field theory, the above
expectation value quadratic in the field ’ is divergent. It
suffers from quadratic and logarithmic ultraviolet diver-
gences

h’2ð ~x; tÞi � 1

4�2

Z 1

0
dk

�
k

a2
þ _a2

a2k
þ . . .

�
: (1.5)

The first term corresponds to the usual contribution from
vacuum fluctuations in Minkowski space. This contribu-
tion can be eliminated by renormalization as claimed, for
instance, in [12]. However, the second term is also charac-
teristic of vacuum fluctuations in a curved background.
Because the different k modes fluctuate independently of
each other, one could be tempted to get rid of this loga-
rithmic ultraviolet divergence by simply eliminating the
modes with k > aH and leaving the rest unaffected (see,
for instance, [13]). If one eliminates this divergence using a
window function in this way, as is usual for random fields,
then one obtains�2

’ðkÞ � H2=4�2, where�2
’ðkÞ is defined

by the quantity �2
’ðk; tÞ evaluated a few Hubble times after

the ‘‘horizon crossing time’’ tk, since this is the time scale
at which the modes behave as classical perturbations.1

However, one should take into account that the field fluc-
tuations are quantum in nature and, therefore, one should
consider the subtle points of quantum field theory (QFT)
regarding the ultraviolet divergences.

Even though free quantum field theory is usually re-
garded as an infinite set of independent harmonic oscilla-
tors (one for each k mode), there are fundamental holistic
aspects of QFT that can not be properly understood in
terms of independent modes. Renormalization is the hall-
mark of the holistic aspect of QFT. This is clear in the fact

that, although the renormalization schemes in QFT in
curved spacetimes are based on the ultraviolet behavior
of the theory, the infrared sector is also affected by renor-
malization, leading potentially to observable consequen-
ces. This can be explicitly displayed by considering, for
instance, the Casimir effect. The energy density between
the two conducting plates obtained by proper renormaliza-
tion provides the well-known and experimentally tested
expression. However, a naive subtraction obtained by in-
troducing a high-frequency cutoff in the integrals in mo-
mentum space (i.e., treating the k modes as being
independent) produces a quite different result (see the
discussion of [14]).
Taking this into account, we see that the logarithmic

divergence in (1.5) should be dealt with by renormalization
and one cannot rule out, a priori, the possibility that the
treatment of the divergences at very high values of k may
produce some impact at lower momenta. Therefore, we
propose that in the standard definitions of the spectrum
�2

’ðk; tÞ, as given in (1.2) and (1.4), one should replace the
unrenormalized h’2ð ~x; tÞi by the renormalized variance,

h’2ð ~x; tÞiren. Writing ~�2
’ðk; tÞ for the spectrum defined in

this way, the definition in (1.4) (and similarly in (1.2)) is
replaced by the corresponding renormalized expression

h’2ð ~x; tÞiren ¼
Z 1

0

dk

k
~�2
’ðk; tÞ: (1.6)

This way, the physical variance h’2ð ~x; tÞiren remains a well-
defined quantity, in the same way as one could obtain a
finite expression for the expectation values of the quantum
stress-energy tensor. To complete the physical consistency
of this approach, it would be desirable to define a unique
expression for the necessary subtractions required to pro-
duce a consistent h’2ð ~x; tÞiren. Since the power spectrum is
defined in momentum space, the natural scheme is renor-
malization in momentum space, so we define

h’2ð ~x; tÞiren ¼ 4�

ð2�Þ3
Z 1

0
k2dkðj’kðtÞj2 � CkðtÞÞ; (1.7)

where CkðtÞ represents the expected counterterms. As we
will see, adiabatic renormalization [9,15,16], which works
by subtracting a set of counterterms ‘‘mode-by-mode,’’
provides a natural expression for the counterterms encoded
in CkðtÞ. Moreover, the DeWitt-Schwinger renormaliza-
tion, originally defined in position space (see, for instance,
[9,16]), can be nicely translated to momentum space [17],
thus providing another answer for CkðtÞ. When these two
schemes are applied to the field perturbations arising from
inflation, the resulting expressions for CkðtÞ coincide, thus
defining a unique expression for the spectrum ~�2

’ðk; tÞ.
The holistic nature of QFT is then explicitly realized

through (1.6). Although the counterterms are fully deter-
mined by the ultraviolet behavior of the modes, the long

wavelength sector, and hence the new ~�2
’ðk; tÞ, is signifi-

cantly affected by the subtractions. In the slow-roll sce-

1The time tk is defined by aðtkÞ=k ¼ HðtkÞ, where aðtÞ is the
expansion factor and H ¼ _a=a is the Hubble rate.
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nario, when H slowly decreases with time, the effects of

renormalization have a nontrivial impact on ~�2
’ðk; tÞ when

this quantity is evaluated a few Hubble times after the time
of horizon crossing tk. For instance, for the tensorial modes
we obtain

~� 2ðkÞ �
�
H

2�

�
2
�; (1.8)

where � is the usual slow-roll parameter. A similar expres-
sion is obtained for the scalar perturbations (involving now
the slow-roll � and � parameters), with the corresponding
changes in the tensor-to-scalar ratio, the spectral indices
and the consistency relation. The new predictions remain
in agreement with observation for the simplest forms of
inflation (�2 and �4 potentials). It is worth pointing out
that the new consistency condition for single-field inflation
is predicted to be

r ¼ 4ð1� ns � ntÞ þ 4n0t
n2t � 2n0t

� ð1� ns �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n0t þ ð1� nsÞ2 � n2t

q
Þ; (1.9)

instead of the standard prediction r ¼ �8nt. The tensor-to-
scalar ratio is now related with the spectral indices nt, (1�
ns), and also n0t � dnt=d lnk. This modification has far
reaching consequences. For instance, since the observa-
tions from the 5-year WMAP [3](with BAO+SN) strongly
suggest that ð1� nsÞ � 0:030� 0:015 (with r < 0:22),
expression (1.9) allows for an exact scale-invariant tenso-
rial power spectrum, nt ¼ 0, while being compatible with a
nonzero ratio r � 0:12� 0:06. We will comment on this
further later on.

The paper is organized as follows. In Sec. II, we briefly
review the standard ways to derive the expressions for the
tensor and scalar power spectra of single-field slow-roll
inflation. In Sec. III, we work out the new definition of the
power spectra and give the technical details involving the
required renormalization in momentum space. In Sec. IV,
we provide, as a consequence of the new power spectra, the
corresponding expression for the tensor-to-scalar ratio r,
the tensorial and scalar spectral indices, and the slow-roll
parameters. This leads, in particular, to a change in the
consistency condition that relates the tensor-to-scalar am-
plitude ratio to the spectral indices. In Sec. V, we summa-
rize our results and conclusions. We use natural units
@ ¼ 1 ¼ c.

II. SPECTRUM OF FLUCTUATIONS FROM
INFLATION

We will now proceed to briefly review the standard
predictions for the power spectra in single-field slow-roll
inflation. In obtaining these predictions, quantum field
renormalization in the curved spacetime of the expanding
Universe is not taken into account.

A. Tensorial spectrum

Let us focus on the production of relic gravitational
waves by considering fluctuating tensorial modes hijð ~x; tÞ
in an expanding, spatially flat Universe

ds2 ¼ �dt2 þ a2ðtÞð�ij þ hijÞdxidxj: (2.1)

The wave equation obeyed by these modes comes from the
linearized Einstein equations and is given by

� a2 €hij � 3a _a _hij þr2hij ¼ 0: (2.2)

Expanding the fluctuating fields hij in plane wave modes

hkðtÞeijei ~k ~x, where eij is a constant polarization tensor

obeying the conditions eij ¼ eji, eii ¼ 0 and kieij ¼ 0,

we obtain the equation

€h k þ 3H _hk þ k2

a2
hk ¼ 0; (2.3)

with k � j ~kj. The conditions for the polarization tensor
imply that the perturbation field hij can be decomposed

into two polarization states described by a couple of mass-

less scalar fields hij ¼ hþeþij þ h�e�ij , where esije
s0
ij ¼

2�ss0 (s ¼ þ, � stands for the two independent polariza-
tions), both obeying the above wave equation [18] (see
also, for instance, [19]). Note that, since tensor perturba-
tions are gauge-invariant at linear order [10], the fields

hþ;�eþ;�
ij represent the physical degrees of freedom

(from now on we omit the subindex þ or �). On scales

larger than the Hubble radius, the damping term 3H _hk
dominates. However, on scales smaller than the Hubble
radius it is the spatial gradient term that dominates over the
damping term, thus leading to the conventional flat-space
oscillatory behavior of modes. To constrain the form of the
modes defining the quantization, it is natural to impose the
adiabatic asymptotic condition [4,9] for large k

hkðtÞffiffiffiffiffiffiffiffiffiffiffiffiffi
16�G

p � ð2ð2�Þ3wðtÞa3ðtÞÞ�1=2e�i
R

t
wðt0Þdt0 ; (2.4)

with wðtÞ ¼ k=aðtÞ, where the factor
ffiffiffiffiffiffiffiffiffiffiffiffiffi
16�G

p
(G is the

Newton constant) has to be introduced to get a canonically
normalized variable. This condition does not uniquely fix
the form of the modes. For instance, in an exact de Sitter
background (aðtÞ ¼ eHt, with H a strict constant) one can
invoke de Sitter invariance to uniquely determine the
modes [20], and one obtains

hkðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16�G

2ð2�Þ3k3
s

ðH� ike�HtÞeiðkH�1e�HtÞ: (2.5)

These modes oscillate until the physical wave length
reaches the Hubble length H�1. The amplitude of the
modes at this time, usually called the ‘‘horizon exit’’

time tk, defined by k=aðtkÞ ¼ H, is then jhkj2 ¼ 2GH2

�2k3
. A

few Hubble times after horizon exit, the modes get frozen
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as classical perturbations [10,13,19] (see also [21]) with

constant amplitude jhkj2 ¼ GH2

�2k3
. The freezing amplitude is

usually codified through the unrenormalized quantity
�2

hðkÞ ¼ 4�k3jhkj2. Taking into account the two polariza-

tions hhijðxÞhijðxÞi ¼
R1
0 k�1dk4�2

hðkÞ, one easily gets the
standard scale-free tensorial power spectrum PtðkÞ �
4�2

hðkÞ ¼ 8
M2

P

ðH2�Þ2, where MP ¼ 1=
ffiffiffiffiffiffiffiffiffiffi
8�G

p
is the reduced

Planck mass in natural units. The appearance of such
frozen fluctuations converts the modes into classical per-
turbations with wavelengths that are still stretched by the
rapid expansion to reach astronomical scales. This is es-
sentially what happens in the inflationary era.

1. Slow-roll inflation

To take into account that inflation lasts for a finite period
of time, one usually considers the so-called slow-roll sce-
nario [10,13,19]. The homogeneous part of the inflaton
field �0ðtÞ rolls slowly down its potential Vð�Þ toward a

minimum. Both �0 and H �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8�G
3 Vð�0Þ

q
are changing

very gradually and this change is parameterized by the

slow-roll parameters �; �, where � ¼ � _H=H2, and ��
� ¼ €�0=ðH _�0Þ. In the slow-roll approximation, defined
when the parameters are small �, j�j 	 1, one can relate
them to the derivatives of the inflaton potential � ¼
ðM2

P=2ÞðV0=VÞ2, � ¼ M2
PðV 00=VÞ. To generate an approxi-

mate form for the modes, it is convenient to introduce the
conformal time variable � � R

dt=aðtÞ. In terms of � the
wave equation turns out to be of the form

d2hk
d�2

þ 2Ha
dhk
d�

þ k2hk ¼ 0; (2.6)

and taking into account that in the slow-roll approximation

ð1� �Þ� ¼ � 1

aH
; (2.7)

we get

d2hk
d�2

� 2ð1þ �Þ
�

dhk
d�

þ k2hk ¼ 0: (2.8)

Within this approximation, and treating now the parameter
� as a constant, one can exactly solve the above equation as
follows:

hkðtÞ ¼ ð�16�G��=4ð2�Þ3a2Þ1=2
� ½EðkÞHð1Þ

� ð�k�Þ þ FðkÞHð2Þ
� ð�k�Þ�; (2.9)

where the index of the Bessel function is � ¼ 3=2þ �, and
the complex coefficients EðkÞ and FðkÞ obey the normal-
ization requirement

jEðkÞj2 � jFðkÞj2 ¼ 1: (2.10)

The adiabaticity condition (2.4) implies that

lim
k!1

EðkÞ ¼ 1 lim
k!1

FðkÞ ¼ 0: (2.11)

The simplest way to choose EðkÞ and FðkÞ would be to
require that, for � ! 0, we recover the exact de Sitter form
of the modes. This would mean that EðkÞ ¼ 1 and FðkÞ ¼
0 for every value of k.

2. Infrared divergences

The choice EðkÞ ¼ 1 and FðkÞ ¼ 0 is, however, an
idealized situation which assumes that inflation started at
an infinite time in the past. A consequence of this assump-
tion is that the two-point function

h0jhðxÞhðx0Þj0i ¼
Z

d3kei
~kð ~x� ~x0Þhkð�Þh�kð�0Þ (2.12)

is ill-defined due to an infrared divergence. This is so
because in the limit k ! 0 the integrand in (2.12) behaves
as

dk

k

1

k2�
; (2.13)

and � > 0. For general EðkÞ and FðkÞ we have, instead,
dk

k

jEðkÞ � FðkÞj2
k2�

: (2.14)

The infrared divergence is avoided if jEðkÞ � FðkÞj2 ! 0,
as k ! 0. This happens naturally if one assumes that
inflation started smoothly at some early, but finite, time
(see, for instance, [22]). Assuming that the initial vacuum
is well-defined, and since the dynamical evolution cannot
generate infrared divergences [23,24], one should get
EðkÞ ! FðkÞ, when k ! 0 (as explicitly obtained in
[22]), and a finite contribution to the two-point function
in the infrared end.
The scale of this infrared behavior of the functions EðkÞ

and FðkÞ is given by the Hubble radius at the beginning of
inflation. Only those wavelengths that were already outside
the inflationary Hubble radius

k=aðtÞ 	 HðtÞ (2.15)

when inflation began can see this infrared behavior.
However, only the wavelengths that crossed the Hubble
radius

k=aðtkÞ ¼ HðtkÞ (2.16)

at 50–60 e folds before the end of the inflationary epoch
have cosmological observable consequences today. For
these wavelengths the functions EðkÞ and FðkÞ behave as
in the Bunch-Davies vacuum (EðkÞ � 1, FðkÞ � 0).
Despite having no direct observable consequences, the
behavior of EðkÞ and FðkÞ for very large wavelengths is
important for the consistency of the theoretical framework
because it avoids an infrared divergence in the two-point
function.
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3. Nearly scale-invariant spectrum

The Hubble exit time tk can be rewritten, in terms of the
conformal time, as

� k�ðtkÞ ¼ ð1þ �Þ: (2.17)

Therefore, at the Hubble exit time tk the amplitude of the

modes hk given in (2.9) takes the value jhkj2 ¼ 2GH2ðtkÞ
�2k3

,

and then �2
hðkÞ ¼ 8GH2ðtkÞ

� . This provides a nearly scale-

invariant spectrum of fluctuations. The k dependence of
H2ðtkÞ

d lnHðtkÞ
d lnk

¼ �� (2.18)

leads to

�2
hðkÞ ¼ �2

hðk0Þ
�
k

k0

��2�
; (2.19)

where k0 is a pivot scale. One defines the tensorial spectral
index nt as the exponent in the above expression. So

nt ¼ �2�ðtkÞ: (2.20)

In the latter formula we have explicitly considered that the
constant parameter � in the previous calculation is given by
its value around the Hubble exit for the k mode.

The same conclusion can be achieved by evaluating the
power spectrum a few e foldings after crossing the Hubble
radius. One can then consider the approximation �k� 	
1, which implies

jHð1Þ
� ð�k�Þj2 � 2

�
ð�k�Þ�2�: (2.21)

Furthermore, from the slow-roll Eq. (2.7) we obtain

a ¼ að�0Þ
�
�

�0

�
1=ð��1Þ

; (2.22)

where �0 is an arbitrary reference time. Therefore, we can
write

jhkðtÞj2 � 16�G

4ð2�Þ3
ð���Þ
a2

2

�
ð�k�Þ�2�

� G

�2ka2ð�0Þ
ð�k�0Þ�2�2�; (2.23)

which explicitly shows the dependence on k�2� of �2
hðkÞ /

k3jhkðtÞj2. Now, taking for convenience the reference time
�0 in (2.22) as �0 ¼ �ðtkÞ and using that aðtkÞ ¼ k=HðtkÞ
and �ðtkÞ ¼ � 1

ð1��Þk , one can find immediately that

jhkðtÞj2 � G

�2k3
H2ðtkÞ

�
1

1� �

��2�2� � G

�2k3
H2ðtkÞ;

(2.24)

Taking into account the two polarizations one finally gets
the same unrenormalized power spectrum PtðkÞ �
4�2

hðkÞ ¼ 16�k3jhkj2 (up to a factor 1=2)

PtðkÞ ¼ 8

M2
P

�
HðtkÞ
2�

�
2
: (2.25)

B. Scalar spectrum

We now proceed to reproduce the standard results for the
unrenormalized power spectrum of scalar perturbations.
We first consider, for simplicity, the inflaton field in an
unperturbed background and compute the �2

’ evaluated at

tk. In order to evaluate�
2
’ at later times (a few e folds after

tk), we must improve the calculation by taking into account
the fluctuation of the background metric using the spatially
flat slicing. We also show how to reproduce this result
using a more rigorous approach in terms of gauge-invariant
quantities.
Consider the inflaton field �ðt; ~xÞ made out of a homo-

geneous part �0ðtÞ and a small fluctuating part ��ð ~x; tÞ.
The fluctuation ��ð ~x; tÞ satisfies, in the approximation of
considering an unperturbed background spacetime, the
wave equation

€��þ 3H _��� a�2r2��þ V 00ð�0Þ�� ¼ 0: (2.26)

Because of the slow rolling of�0ðtÞ from the hill potential,
the term V 00 is very small, which allows one to estimate the
amplitude of quantum fluctuations �2

� in a way similar to

�2
h. Inflaton fluctuations translate into curvature perturba-

tions, which constitute the ‘‘seeds’’ for structure formation
and are characterized by their scalar power spectrum

PRðkÞ ¼ ðH= _�0Þ2�2
�. Evaluating �2

� and ðH= _�0Þ2 at the
time of horizon exit tk [10,19] one gets �

2
� ¼ H2ðtkÞ=2�2

and H2ðtkÞ= _�2
0ðtkÞ ¼ 1

2M2
P�ðtkÞ . Therefore, PRðkÞ �

1
M2

P�ðtkÞ ð
HðtkÞ
2� Þ2.

One can improve this approximation by taking into
account the effect of the metric perturbation in (2.26). To
properly define the wave equation for ��ð ~x; tÞ we have to
specify a slicing. Choosing for convenience the spatially
flat slicing, the equation for the field perturbation ��ð ~x; tÞ
is (see, for instance, [13])

€��þ 3H _��� a�2r2��þ V 00ð�0Þ��

þ 1

a3
d

dt

�
2a3 _H

H

�
�� ¼ 0: (2.27)

In the slow-roll approximation, the corresponding Fourier
components of �� obey

€�� k þ 3H _��k þ a�2k2��k þH2ð3�� 6�Þ��k ¼ 0:

(2.28)

To deal with this equation, one usually considers that the �
and � parameters are constant, while H ¼ _a=a remains a
time-dependent function. So we have
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€�� k þ 3
_a

a
_��k þ a�2k2��k þ _a2

a2
ð3�� 6�Þ��k ¼ 0:

(2.29)

With this assumption one can exactly solve the equation in
terms of the conformal time �. The form of the modes ��k

is the same as for the tensorial ones, up to the coefficientffiffiffiffiffiffiffiffiffiffiffiffiffi
16�G

p
,

��kðtÞ ¼ ð���=4ð2�Þ3a2Þ1=2Hð1Þ
� ð�k�Þ; (2.30)

where the index of the Bessel function is now � ¼ 3=2þ
3�� �. Evaluating this perturbation a few Hubble times
after the horizon crossing time, one obtains the standard
result

PRðkÞ ¼ ðH= _�0Þ24�k3j��kj2 ¼ 1

2M2
P�ðtkÞ

�
HðtkÞ
2�

�
2
;

(2.31)

where the constant parameter � is given at the Hubble
radius time scale tk. Because of the k dependence of
HðtkÞ and �ðtkÞ, one also gets a nearly scale-free spectrum

PRðkÞ ¼ PRðk0Þ
�
k

k0

�
ns�1

; (2.32)

where the so-called scalar spectral index ns is found to be

ns ¼ 1� 6�þ 2�: (2.33)

To complete our presentation, we will explain how the
above result can be recovered without specifying any
particular slicing and threading of spacetime. These scalar
perturbations are commonly studied through the gauge-
invariant quantity R (the comoving curvature perturba-
tion)

R ¼ �þ H
_�0

��; (2.34)

where � is the curvature perturbation (Rð3Þ ¼ 4r2�=a2)
of the spatial metric gij ¼ a2½ð1� 2�Þ�ij þ 2@ijE�. In
momentum space, R obeys the equation [25,26]

d2Rk

d�2
þ 2

z

dz

d�

dRk

d�
þ k2Rk ¼ 0; (2.35)

where z � a _�0=H. In the slow-roll approximation
z�1dz=d� ¼ aHð1þ 2�� �Þ and hence

zð�Þ ¼ zð�0Þ
�
�

�0

��1�3�þ�
; (2.36)

where �0 is again a reference instant of time. Furthermore,
the above wave equation simplifies to

d2Rk

d�2
� 2ð1þ 3�� �Þ

�

dRk

d�
þ k2Rk ¼ 0: (2.37)

The solution obeying the adiabatic condition (and the
de Sitter symmetry for H constant) is

R kðtÞ ¼ ð���=4ð2�Þ3z2Þ1=2Hð1Þ
� ð��kÞ; (2.38)

where � ¼ 3=2þ 3�� �. Evaluating RkðtÞ at t ¼ tk one
obtains the power spectrum estimated above in terms of the
fluctuations of the inflaton field. We can also evaluate the
amplitude jRkj2 a few Hubble times after tk. Using �ðtkÞ as
reference time in (2.36), it is easy to get (PRðkÞ ¼
�2

RðkÞ ¼ 4�k3jRkj2)

PRðkÞ ¼ 1

2M2
P�ðtkÞ

�
HðtkÞ
2�

�
2
: (2.39)

C. Tensor-to-scalar amplitude ratio and spectral indices

We have seen that the concrete value of the amplitude of
the power spectra depends on the time at which they are
evaluated. In the literature, one find different times that can
be parameterized by 	, according to the condition
k=aðtÞ ¼ 	H. The power spectra are then modified by
the factor (1þ 	2) (see for instance [27]), which goes to
unit exponentially fast. This ambiguity, however, is irrele-
vant in the evaluation of physical observables such as the
tensor-to-scalar ratio r and the spectral indices. In fact,
irrespective of the evaluation time (tk or a few e foldings
after it), the ratio

r ¼ PtðkÞ
PRðkÞ (2.40)

gives a constant quantity

r ¼ 16�ðtkÞ: (2.41)

The other two physical observables are neither affected by
the ambiguity in the evaluation time of the power spectra.
The spectral indices are unambiguously given by

nt ¼ �2�ðtkÞ; (2.42)

and

1� ns ¼ 6�ðtkÞ � 2�ðtkÞ: (2.43)

From the above formulas one infers a necessary relation
between measurable quantities

r ¼ �8nt; (2.44)

which, as claimed many times in the literature, should be
verified by any single-field slow-roll inflationary model
irrespective of the form of the potential. For this reason,
the future experimental checking of this condition is usu-
ally regarded as an important test of the simplest forms of
inflation.
This concludes our review of the standard derivation of

the unrenormalized predictions of single-field slow-roll
inflation.
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III. THE ROLE OF ULTRAVIOLET
DIVERGENCES: RENORMALIZATION OF THE

SPECTRUM OF FLUCTUATIONS

In this section we reexamine the derivation of the power
spectra taking into account the effects of renormalization.

A. Ultraviolet divergences and momentum-space
renormalization

It is easy to see that �2
hðk; tÞ gives the formal contribu-

tion, per d lnk, to the variance of the gravitational wave
fields hþ;�

hh2i ¼
Z 1

0
k2dk

Z
d�jhkj2 ¼

Z 1

0

dk

k
�2

hðk; tÞ; (3.1)

since, as already defined, �2
hðk; tÞ � 4�k3jhkj2. Although,

as noted previously, the small k behavior of the functions
EðkÞ and FðkÞ cures the potential infrared divergence in the
above integral, the large k behavior of the modes makes the
integral divergent

hh2i ¼
Z 1

0

dk

k

16�Gk3

4�2a3

�
a

k

�
1þ ð2þ 3�Þ

2k2�2

�
þ . . .

�
; (3.2)

It is a common view to bypass this point by regarding
hð ~x; tÞ as a classical random field. One then introduces a
window function WðkRÞ in the integral to smooth out the
field on a certain scale R and to remove the Fourier modes
with k�1 <R. However, as explained in the introduction, it
is our view to regard the variance as a basic physical object
and treat h and R (or �� in the flat-slicing gauge) as a
proper quantum field. Renormalization is then the natural
solution to eliminate the ultraviolet divergences and keep
the variance in position space finite and well-defined. Since
the physically relevant quantity (power spectrum) is ex-
pressed in momentum space, the natural renormalization
scheme to apply is the so-called adiabatic subtraction [5],
as it renormalizes the theory in momentum space.
Adiabatic renormalization [9,15,16] removes the divergen-
ces present in the formal expression (3.1) by subtracting
counterterms mode-by-mode in the integral (3.1)

hh2iren ¼
Z 1

0

dk

k

�
4�k3jh ~kj2 �

16�Gk3

4�2a3
ðw�1

k þðW�1
k Þð2ÞÞ

�
;

(3.3)

with wk ¼ k=aðtÞ. The subtraction of the first term
ð16�Gk3=4�2a3wkÞ cancels the typical flat-space vacuum
fluctuations, which are responsible for the quadratic diver-
gence in the integral (3.2). The additional term, propor-

tional to ðW�1
k Þð2Þ and which involves _a2 and €a, is

necessary to properly perform the renormalization in an
expanding Universe. It cancels the logarithmic divergence
in (3.2).

However, one can legitimately ask if the momentum-
space counterterms are uniquely fixed. In other words,
can a different renormalization scheme, as the DeWitt-

Schwinger subtraction prescription in momentum space
[17], lead to a different expression for the counterterms?
Before going further in our analysis, let us briefly summa-
rize the main steps of momentum-space renormalization
(for an extensive exposition see [9]).

B. Momentum-space renormalization

1. Adiabatic renormalization

Let us consider a generic free scalar field ’ in our
spatially flat cosmological metric obeying the field equa-
tion

€’þ 3H _’� a�2r2’þ ðm2 þ 
RÞ’ ¼ 0; (3.4)

where R is the four-dimensional scalar curvature

R ¼ 6

��
_a

a

�
2 þ €a

a

�
; (3.5)

and 
 is the curvature coupling. We include this term to be
general and for illustrative purposes. The Fourier compo-
nents of ’ obey the equation

€’ k þ 3
_a

a
_’k þ a�2k2’k þ

�
6

�
_a2

a2
þ €a

a

�

þm2

�
’k ¼ 0:

(3.6)

Note that the role of the dimensionless parameter 
 here is
similar to the role of the � and � parameters in the wave
equation (2.29) for the perturbation.
Let us assume that the form of the normalized modes is

ð2Va3ðtÞÞ�1=2ei
~k ~x �’kðtÞ, where V � L3 is the volume of a

box of coordinate length L. The continuous limit is ob-

tained by replacing V by ð2�Þ3 and
P

~k by
R
d3 ~k. The

function �’kðtÞ obeys the equation
d2

dt2
�’k þ�2

k �’k ¼ 0; (3.7)

where

�2
k ¼ w2

k þ �; (3.8)

with wk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2=a2 þm2

p
and

� ¼
�
6
� 3

4

��
_a

a

�
2 þ

�
6
� 3

2

�
€a

a
: (3.9)

The function �’kðtÞ is assumed to obey also the adiabatic

condition �’kðtÞ � w�1=2
k e�i

R
wkðt0Þdt0 in the large k regime.

This condition does not uniquely determine the form of
�’kðtÞ (different solutions lead to different sets of modes
and, therefore, to different vacuum states) but it uniquely
determines an asymptotic expansion for all possible solu-
tions. This expansion is characterized by

�’ kðtÞ �W�1=2
k e�i

R
Wkðt0Þdt0 ; (3.10)

with a recursive expansion
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Wk ¼ wk þ wð2Þ
k þ wð4Þ

k þ . . . (3.11)

where

wð2Þ
k �

�
1

2
w�1=2

k

d2

dt2
w�1=2

k þ 1

2
w�1

k �

�
: (3.12)

Similar expressions for wð4Þ
k and all the other higher-order

terms can be found. Each order in the (adiabatic) expansion
is characterized by the number of time derivatives of aðtÞ
appearing in a term. While wk is of zero order, wð2Þ

k is of

second order, as one can trivially verify by simple count-
ing. Note that � is of second adiabatic order. One should
have in mind that the adiabatic expansion is an asymptotic
series and does not converge in general. This is why the
form of the modes is not uniquely defined by the adiabatic
condition, thus allowing to have different solutions and
hence different vacuum states.

The evaluation of the variance of the field ’ as a sum in
modes leads to a divergent expression. In the continuous
limit it is given by

h’2i ¼ ð4�2a3Þ�1
Z 1

0
dkk2j �’kj2: (3.13)

As is evident from the asymptotic expansion (3.10), one
necessarily encounters ultraviolet divergences in the above
quantity. Generically one encounters quadratic and loga-
rithmic divergences. In the adiabatic renormalization, the
physically relevant finite expression is obtained from the
formal one by subtracting mode-by-mode each term in the
adiabatic expansion of the integrand that contains at least
one ultraviolet divergent part for arbitrary values of the
parameters (m and 
) of the theory [9]. Applying this to the
particular case of the variance of the field ’ one gets

h’2iren ¼ ð4�2a3Þ�1
Z 1

0
dkk2ðj �’kj2 � w�1

k � ðW�1
k Þð2ÞÞ;
(3.14)

where w�1
k and ðW�1

k Þð2Þ are the zeroth and second-order

terms, respectively, in the adiabatic expansion of W�1
k .

Generically, the second adiabatic counterterm ðW�1Þð2Þ is
given by

ðW�1
k Þð2Þ ¼ � 1

w2
k

�
1

2
w�1=2

k

d2

dt2
w�1=2

k þ 1

2
w�1

k �

�
: (3.15)

Note that, in the flat-space limit �’k goes to the usual

Minkowski form of the modes, ðW�1
k Þð2Þ goes to zero,

and h’2iren gives a vanishing result, in agreement with

normal ordering. In a dynamical Universe, ðW�1
k Þð2Þ is

generically nonzero and the renormalization produces a
nontrivial, well-defined result for the physical variance.

For its physical relevance in our reevaluation of the
inflationary power spectra, it is specially interesting to
analyze the massless limit of the above result. When m !
0, the subtraction counterterms take the form

ð4�2a3Þ�1k2ðw�1
k þ ðW�1

k Þð2ÞÞ

¼ ð4�2a3Þ�1k2
�
a

k
þ ð1� 6
Þ a

3

2k3

��
_a

a

�
2 þ €a

a

��
:

(3.16)

2. Comparison with the momentum-space representation
of the DeWitt-Schwinger subtraction terms

Using a local momentum representation in a normal
neighborhood admitting Riemann normal coordinates,
one can express in momentum space the DeWitt-
Schwinger proper time representation of the Green func-
tions [17] (see also [9,16]). Up to second adiabatic order,
we have

Gð2Þ
DSðP;QÞ ¼ �i

jgðPÞj1=4
ð2�Þ4

Z
d4keiky

�
�

1

ðk2 þm2Þ þ
ð16 � 
ÞR
ðk2 þm2Þ2

�
; (3.17)

where gðPÞ is the determinant of the metric at the point P

in the so-called Riemann normal coordinates y�, ky �
�k0y

0 þ ~k ~y , and the contour of integration in the k0 plane
is assumed to be the usual contour defining the particular
two-point function. The point Q has been taken as the
reference point for constructing the Riemann coordinates.
These coordinates are constructed by considering the
unique geodesic that joins the reference point with an
arbitrary point P in a normal neighborhood of Q. The
Riemann coordinates y� of P are given by

y� ¼ 	
�; (3.18)

where 	 is the value at P of an affine parameter of the
geodesic joining Q, at 	 ¼ 0, to P. The vector 
� is the
tangent to the geodesic at the point Q


� ¼ dx�

d	

��������Q
: (3.19)

Although in these coordinates the form of the geodesic
equations is trivial, the form of the metric at Q is not
necessarily Minkowskian. When we impose, additionally,
that ds2jQ ¼ �ðdy0Þ2 þ ðdy1Þ2 þ ðdy2Þ2 þ ðdy3Þ2, we

have then the so-called Riemann normal coordinates. In
our spatially flat Universe ds2 ¼ �dt2 þ a2ðtÞd~x2 and for
our problem, we take the initial and final points (Q �
ðt0; ~x0Þ; P � ðt0; ~xÞ) at the constant time hypersurface t ¼
t0. We then have y0 ¼ 0 and

~y ¼ aðt0Þð ~x� ~x0Þ: (3.20)

Moreover, gðPÞ ¼ gðQÞ ¼ 1.

The explicit form of Gð2Þ
DSðP;QÞ in our cosmological

scenario reduces, after performing the k0 integration, to

Gð2Þ
DSð ~x; t0; ~x0; t0Þ ¼ I1 � ð16 � 
ÞRI2; (3.21)
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where R is the scalar curvature and

I1 ¼ 1

2ð2�Þ3
Z

d3 ~k
ei

~kð ~y� ~y0Þ

wka

; (3.22)

I2 ¼ 1

2ð2�Þ3
Z

d3 ~k
ei

~kð ~y� ~y0Þ

2w3
ka

; (3.23)

with w2
ka ¼ k2 þm2. Finally, performing the change of

variables ~k ! ~k=aðt0Þ we get

Gð2Þ
DSð ~x; t0; ~x0; t0Þ ¼

1

2ð2�Þ3a3
Z

d3 ~k

�
�
1

wk

þ ð16 � 
ÞR
2w3

k

�
ei

~kð ~x� ~x0Þ: (3.24)

In the DeWitt-Schwinger point-splitting framework, the
renormalization of the variance h’2ð ~x; t0Þi proceeds by

subtracting Gð2Þ
DSð ~x; t0; ~x0; t0Þ to the two-point function and

taking the coincidence-point limit ~x0 ! ~x

h’2ð ~x; t0Þiren ¼ lim
~x0! ~x

½h’ð ~x; t0Þ’ð ~x0; t0Þi �Gð2Þ
DSð ~x; t0; ~x0; t0Þ�:

(3.25)

In the massless limit, m ! 0, the integrand of the

momentum-space representation of Gð2Þ
DSð ~x; t0; ~x0; t0Þ is

Gð2Þ
DSð ~x; t0; ~x0; t0Þ ¼

1

2ð2�Þ3a3
Z

d3 ~k

�
a

k
þ ð1� 6
Þ a

3

2k3

�
��

_a

a

�
2 þ €a

a

��
ei

~kð ~x� ~x0Þ

¼ 1

4�2a3

Z 1

0
dkk2

�
a

k
þ ð1� 6
Þ a

3

2k3

�
��

_a

a

�
2 þ €a

a

��
sinkj ~x� ~x0j
kj ~x� ~x0j : (3.26)

Taking ~x ! ~x0, the integrand of the above expression co-
incides exactly with the momentum-space counterterms
obtained previously via the adiabatic renormalization.
Therefore, the question ending Sec. III A is answered.
The adiabatic subtraction coincides with the DeWitt-
Schwinger subtraction prescription in momentum space
in the massless limit, irrespective of the value of the
dimensionless parameter 
.

C. Tensorial spectrum

Let us apply the above scheme to the tensorial fluctua-

tions of the metric. To determine the counterterm ðW�1
k Þð2Þ

one should rewrite the wave equation (2.3) in the
form (3.7). This can be easily obtained by performing the

change �hk ¼ a3=2hk. One obtains wk ¼ k=a (i.e., m ¼ 0)
and a second-order adiabatic term � of the form (3.9) with

 ¼ 0

� ¼ � 3

4

�
_a

a

�
2 � 3

2

€a

a
: (3.27)

A straightforward calculation gives

ðW�1
k Þð2Þ ¼ _a2

2a2w3
k

þ €a

2aw3
k

: (3.28)

To perform the explicit computation it is useful to take into
account the slow-roll relations

da

d�
¼ ð1þ 2�Þ

ðH�2Þ ; (3.29)

d2a

d�2
¼ �ð2þ 5�Þ

ðH�3Þ : (3.30)

These derivatives are related with the usual dotted deriva-
tives as follows:

_a ¼ a�1 da

d�
; (3.31)

€a ¼ �a�3

�
da

d�

�
2 þ a�2 d

2a

d�2
: (3.32)

The final expression for zeroth and second-order adiabatic
counterterms is then2

w�1
k þ ðW�1

k Þð2Þ ¼ a

k

�
1þ ð2þ 3�Þ

2k2�2

�
: (3.33)

The subtraction of these counterterms produces the expres-
sion (assuming that EðkÞ ¼ 1 and FðkÞ ¼ 0 for every k)3

hh2iren ¼
Z 1

0

dk

k

16�Gk3ð���Þ
4�22a2

�
jHð1Þ

� ð�k�Þj2

� 2

�ð�k�Þ
�
1þ ð2þ 3�Þ

2k2�2

��
: (3.34)

Therefore, the renormalized expression for �2
hðk; tÞ is

2In a similar way, the DeWitt-Schwinger subtraction terms in
momentum space lead to the same result. Note in passing that
neither of the proposed (adiabatic) counterterms defined in [28]
for the tensorial and scalar power spectra seem to agree with
those obtained here by adiabatic regularization.

3Note that the second adiabatic counterterm introduces an
infrared divergence in the continuum limit. For k ! 0 the
integrand in hh2iren is proportional to dk=k. This logarithmic
divergence disappears in the finite box formulation and has no
impact on the observable power spectrum, in contrast to the
ultraviolet divergences. Furthermore, the calculation of the re-
normalized stress-energy tensor hT��i, and hence the evolution
of the Universe, is insensitive to the infrared cutoff L when L !
1.
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~�2
hðk; tÞ ¼ 16�Gk3ð���Þ

4�22a2

�
jHð1Þ

� ð�k�Þj2 � 2

�ð�k�Þ
�

�
1þ ð2þ 3�Þ

2k2�2

��
: (3.35)

Note that the asymptotic behavior for large k of the Hankel
function is

jHð1Þ
� ð�k�Þj2 � 2

�ð�k�Þ
�
1þ ð4�2 � 1Þ

8ð�k�Þ2
�
þ . . . : (3.36)

The first two terms for � ¼ 3=2þ � are exactly the adia-
batic counterterms subtracted above.

It is useful to remark that, in adiabatic renormalization
(or, equivalently, in the DeWitt-Schwinger subtraction al-
gorithm), the number of terms that should be subtracted is
determined by the degree of divergence of the expectation
value under consideration. In our case, this degree of
divergence is of second order. Therefore, one must stop
necessarily at second order if the purpose is to make finite
the expectation value hh2i. The relevant subtractions are
carried out mode-by-mode and result in a sum-over-modes
that has no ultraviolet divergence. In addition, as we have
already stressed, it is important to point out that it is
necessary to subtract the relevant adiabatic counterterms
for all modes, including those with large wavelength, even
if the expansion of the Universe is not slow. Note that the
reason for the name‘‘adiabatic’’ regularization is a result of
the fact that the adiabatic (or arbitrarily slow) limit is used
to identify the necessary subtractions. Therefore, it is not
correct to argue, as in [28], that the adiabatic renormaliza-
tion terms are invalid when the expansion is rapid, i.e., in
the nonadiabatic regime. In fact, as noted before, the
adiabatic counterterms coincide with those obtained in
the DeWitt-Schwinger renormalization in momentum
space (which identifies the counterterms in a different
way), irrespective of the rate of the cosmological
expansion.

D. Scalar spectrum

We will work out the (renormalized) spectrum of scalar
perturbations using the gauge-invariant formalism. To
convert Eq. (2.37) into one of the form (3.7) we have to

perform the change �Rk ¼ a1=2zRk. We then obtain that
wk ¼ k=a, and that the second-order adiabatic function �
is given by

� ¼ � 3

4

�
_a

a

�
2 � 3

2

€a

a
þ ð3�� 6�Þ

�
_a

a

�
2
: (3.37)

Note that this � is different from that of (3.9). The reason
for this can be easily seen by looking at the wave equation
in the flat-slicing gauge (2.29). That equation does not have
a constant massive term, and the second adiabatic order
term is H2ð3�� 6�Þ, which is just the last term in (3.37).
This implies that the scalar perturbation (the inflaton in the
flat-slicing gauge or R in the gauge-invariant approach)

should be regarded as a massless field.4 The corresponding
second-order counterterm is thus of the form

ðW�1
k Þð2Þ ¼ _a2

2a2w3
k

þ €a

2aw3
k

� 1

2w3
k

ð3�� 6�Þ
�
_a

a

�
2
:

(3.38)

Therefore, the final expression for the counterterms is

w�1
k þ ðW�1

k Þð2Þ ¼ a

k

�
1þ ð2þ 3ð3�� �ÞÞ

2ð�k�Þ2
�
: (3.39)

Proceeding in a parallel way as for the tensorial case, we
get a renormalized value for hR2i

hR2iren ¼
Z 1

0

dk

k

�
4�k3jRkj2

� k3

4�2z2a
ðw�1

k þ ðW�1
k Þð2ÞÞ

�
: (3.40)

Therefore,

hR2iren ¼
Z 1

0

dk

k
4�k3

���

4ð2�Þ3z2
�
jHð1Þ

� ð��kÞj2

� 2

�ð�k�Þ
�
1þ ð2þ 3ð3�� �ÞÞ

2ð�k�Þ2
��

; (3.41)

where the index � is given by � ¼ 3=2þ 3�� �. The
renormalized expression for �2

Rðk; tÞ is
~�2
Rðk; tÞ ¼ 4�k3ð���Þ

4ð2�Þ3z2
�
jHð1Þ

� ð��kÞj2 � 2

�ð�k�Þ
�

�
1þ ð2þ 3ð3�� �ÞÞ

2ð�k�Þ2
��

: (3.42)

Note finally that, as expected, the same result is obtained
working in the flat-slicing gauge. One then obtains

~�2
�ðk; tÞ ¼ k3ð���Þ

4�22a2

�
jHð1Þ

� ð��kÞj2 � 2

�ð�k�Þ
�

�
1þ ð2þ 3ð3�� �ÞÞ

2ð�k�Þ2
��

; (3.43)

where � ¼ 3=2þ 3�� �. Taking into account that
~�2
Rðk; tÞ ¼ ða2=z2Þ~�2

�ðk; tÞ one recovers the expression

(3.42) for ~�2
Rðk; tÞ.

IV. TESTABLE CONSEQUENCES

In this section we work out new expressions for the
observable magnitudes that follow from the renormalized
power spectra of the previous section.

4This was first taken into account in the calculation of the
renormalized power spectra in [7,29] in terms of the gauge-
invariant quantity R. This quantity was also quantized in [30],
but there the V 00 term in (2.27) was treated as zeroth adiabatic
order, unlike the present treatment, in the evaluation of the
counterterms.
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A. Tensor-to-scalar ratio

Let us now consider the tensor-to-scalar ratio

r � 4
~�2
hðk; tÞ

~�2
Rðk; tÞ

¼ 4
16�Gk3ð���Þ

4�22a2
4ð2�Þ3z2

4�k3ð���Þ

�
ðjHð1Þ

� ð��kÞj2 � 2
�ð�k�Þ ½1þ ð2þ3�Þ

2ð�k�Þ2�Þ
ðjHð1Þ

� ð��kÞj2 � 2
�ð�k�Þ ½1þ ð2þ3ð3���ÞÞ

2ð�k�Þ2 �Þ : (4.1)

Since at the Hubble exit time tk we have z2ðtkÞ ¼
2M2

P�ðtkÞa2ðtkÞ, it follows that

4
16�Gk3ð���Þ

4�22a2
4ð2�Þ3z2

4�k3ð���Þ
��������t¼tk

¼ 16�ðtkÞ: (4.2)

We also find that�
jHð1Þ

� ð��kÞj2 � 2

�ð�k�Þ
�
1þ ð2þ 3�Þ

2ð�k�Þ2
����������t¼tk

¼ 2

�
��ðtkÞ; (4.3)

where � is a numerical constant of order unity, � � 0:904.
A similar estimation is obtained for the factor coming from
the scalar spectrum (up to the substitution � ! �, i.e., � !
3�� �)�
jHð1Þ

� ð��kÞj2 � 2

�ð�k�Þ
�
1þ ð2þ 3ð3�� �ÞÞ

2ð�k�Þ2
����������t¼tk

¼ 2

�
�ð3�ðtkÞ � �ðtkÞÞ: (4.4)

Therefore, the tensor-to-scalar ratio r, evaluated at the
Hubble exit time, is

r ¼ 16�ðtkÞ �ðtkÞ
3�ðtkÞ � �ðtkÞ : (4.5)

An important comment is now in order. To obtain this
result we have evaluated the power spectra at the Hubble
exit time. Nevertheless, as we will show in the next para-
graph, this estimate does not depend critically on the
precise time at which the counterterms are evaluated.
During slow-roll inflation the counterterms decay as j�j2�
(tensorial), j�j2ð3���Þ (scalar), in the late-time limit as
j�j ! 0. This means that they decay very slowly and are
in fact constant in exact de Sitter inflation. After reheating,
the counterterms decay more rapidly, as is obvious from
(3.16). One would then recover the standard prediction r ¼
16�ðtkÞ. However, since the modes acquire classical prop-
erties soon after exiting the Hubble sphere, the relevant
time to evaluate these magnitudes falls in the interval
between tk and a few e foldings after it.

Let us analyze in detail the time dependence of ~�2
hðk; tÞ,

~�2
Rðk; tÞ, and r in terms of the number n of e folds after

crossing the Hubble radius. Since �k�ðtkÞ ¼ 1þ �, we
can write �k� as

� k� ¼ ð1þ �Þ �

�ðtkÞ ¼ ð1þ �Þ
�
aðtkÞ
a

�
1=ð1þ�Þ

¼ ð1þ �Þe�ðn=ð1þ�ÞÞ: (4.6)

The expression for ~�2
hðk; tÞ when �k� 	 1 leads to

~�2
hðk; tÞ � 16�Gk3ð���Þ

4�22a2
2

�
ð�k�Þ�2�

�
�
1� ð�k�Þ2� ð2þ 3�Þ

2ð�k�Þ3
�

� 2

M2
P

�
HðtkÞ
2�

�
2
�
1� ð�k�Þ2� ð2þ 3�Þ

2ð�k�Þ3
�
; (4.7)

and using (4.6), we find

~� 2
hðk; nÞ �

2

M2
P

�
HðtkÞ
2�

�
2
�
1� ð2þ 3�Þ

2
e�2�n

�
: (4.8)

Assuming that we are just a few e folds after the Hubble
exit but before the end of inflation, i.e., n > 1 but n� 	 1,
so that e�2�n � 1� 2�n, we obtain5

~� 2
hðk; nÞ �

2

M2
P

�
HðtkÞ
2�

�
2
�ðtkÞð2n� 3=2Þ: (4.9)

A similar estimation can be obtained for the scalar power
spectrum

~�2
Rðk; nÞ � 1

2M2
P�ðtkÞ

�
HðtkÞ
2�

�
2ð3�ðtkÞ � �ðtkÞÞð2n� 3=2Þ:

(4.10)

Note that the parameter n enters in the power spectra
parameterizing the (unknown) time at which the modes
exhibit classical behavior. However, since both tensorial
and scalar spectra have the same dependence on n, the
tensor-to-scalar ratio is not sensitive to the unknown pa-
rameter n, in the sameway as it is insensitive to the scale of
inflation HðtkÞ, and it is essentially given by (4.5). The
same conclusion can be drawn if one estimates the time
derivative of r. One then obtains that

dr

dn
� Oð�2Þ: (4.11)

This means that the renormalized value for r is changing
very slowly, in agreement with the previous evaluation. In
other words, the value of r evaluated at the Hubble radius
crossing time remains nearly constant during this period of
inflation. Obviously it is not strictly constant, as in the

5We note that if one evaluates the power spectra at the end of
the slow-roll era (where n�� 1) the contribution of the counter-
terms is still significant. However, we find it more natural to
evaluate the spectra soon after Hubble exit, when the modes have
already acquired classical properties.
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computation without renormalization, but its change is
slow.6 We regard this result as a signal of the robustness
of renormalization in determining the spectra of inflation-
ary perturbations.

B. Spectral indices

The above calculations have another important conse-
quence: the spectral indices remain unchanged when they
are evaluated at tk or a few Hubble times after it. By
definition, we have

nt � d lnPt

d lnk
¼ 2

d lnHðtkÞ
d lnk

þ d ln�ðtkÞ
d lnk

; (4.12)

which, according to (4.9), turns out to be independent of n.
The result is

nt ¼ 2ð�� �Þ; (4.13)

where � and � are evaluated at tk. For the scalar index we
have

ns � 1 � d lnPR

d lnk

¼ 2
d lnHðtkÞ
d lnk

� d ln�ðtkÞ
d lnk

þ d lnð3�ðtkÞ � �ðtkÞÞ
d lnk

:

(4.14)

Explicit evaluation gives

ns � 1 ¼ �6�þ 2�þ ð12�2 � 8��þ 
Þ
3�� �

; (4.15)

where 
 is another slow-roll parameter [10]: 
 �
M4

PðV0V000=V2Þ. This parameter can be re-expressed in
terms of �; � and the running of the tensorial index n0t �
dnt=d lnk as follows:

n0t ¼ 8�ð�� �Þ þ 2
: (4.16)

C. Consistency condition

The formulas (4.5), (4.13), (4.14), (4.15), and (4.16)
provide an algebraic relation between the tensor-to-scalar
ratio and the spectral indices, r ¼ rðnt; ns; n0tÞ, that takes
the following form:

r ¼ 4ð1� ns � ntÞ þ 4n0t
n2t � 2n0t

� ð1� ns �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n0t þ ð1� nsÞ2 � n2t

q
Þ: (4.17)

Positivity of the argument of the square root in this ex-
pression imposes the following constraint

ð1� nsÞ2 � n2t þ 2n0t 
 0: (4.18)

The consistency relation (4.17), contrasts with that ob-
tained without invoking renormalization, namely, r ¼
�8nt. Since r must be positive, according to the standard
prediction one would expect nt to be negative. This re-
striction, however, does not follow either from (4.17) nor
from (4.18). Even more, from (4.18) it is easy to see that
our prediction allows for nt 
 0, in sharp contrast with the
standard prediction, which necessarily requires nt ¼
�2� < 0. We also remark that, according to the standard
derivation, the running of nt is fully determined by the
values of ns and nt, since then one finds n0t ¼ �ntð1�
ns þ ntÞ. On the contrary, the manipulations that led to
(4.17) indicate that n0t is now an independent quantity that
needs to be measured in order to check the new consistency
relation (4.17). This aspect could make more challenging
the experimental verification of the consistency condition
of (single-field) slow-roll inflation.
We stress again that the new consistency relation allows

for a null tensorial tilt nt ¼ 0 while being compatible with
a nonzero ratio r � 4ð1� nsÞ. Since the observations from
the 5-year WMAP [3](with BAO+SN) strongly suggest
that ð1� nsÞ � 0:030� 0:015 (with r < 0:22)7 it follows
that, for the case of an exact scale-invariant tensorial power
spectrum, nt ¼ 0, our consistency relation leads to r �
0:12� 0:06. These possibilities may soon come within the
measurement range of forthcoming CMB polarization ex-
periments such as the PLANCK satellite, the QUIJOTE
CMB experiment, SPIDER, Polar BEAR, EBEX, BICEP,
SPUD, and the future CMBPol mission [31].

D. Comparison between the standard and the new
predictions

We can compare the differences between the standard
and the new predictions in terms of the representative set of

chaotic potential models Vð�Þ ¼ 	Mð4�pÞ
P �p. The stan-

dard prediction is

r ¼ 4p

N
; 1� ns ¼ ðpþ 2Þ

2N
;

nt ¼ � p

2N
; n0t ¼ p

2N2
;

(4.19)

where N � lnaend=aðtkÞ is the number of e folds of infla-
tion between the horizon crossing time tk of cosmological
wavelengths and the end of inflation. If we invoke renor-
malization we get, instead,

r ¼ 4p2

ðpþ 2ÞN ; 1� ns ¼ p

2N
;

nt ¼ ð2� pÞ
2N

; n0t ¼ ð2� pÞ
2N2

:

(4.20)

6To be precise, dðlnrÞ=dn ¼ 2�� �. Note that for the expo-
nential potential model Vð�Þ / exp½�ð�=MPÞ

ffiffiffiffiffiffiffiffiffi
2=p

p � we have
� ¼ 2�. Then the new predictions coincide, by accident, with
the standard ones. So in this case _r ¼ 0.

7Marginalized over all other parameters of a flat �CDM
model.
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Note that now the quadratic potential is characterized by
having an exact scale-invariant behavior for the tensorial
spectrum.

E. Comparison with WMAP data

Although a definite test of the new predictions, like the
above proposed consistency condition, requires more ac-
curate data on tensor fluctuations (so far we have only
upper limits on r) we can compare the new predictions
with the standard ones on the basis of the 5 yr WMAP data.
We can contrast the predictions (4.20) for r and ns, for the
representative values p ¼ 2 and p ¼ 4, with theWMAP 5-
year data (see Fig. 5 of Ref. [3]). We find that both models
are compatible with the experimental data for the reason-
able range ofN between 50 and 60. This is in sharp contrast
with the prediction of the standard approach, where the
monomial potential with p ¼ 4 is excluded convincingly.

V. CONCLUSIONS AND FINAL COMMENTS

Inflationary cosmology predicts that, due to quantum
effects, small density perturbations are generated in the
very early Universe with a nearly ‘‘scale-free’’ spectrum.
The detection and analysis of anisotropies in the cosmic
microwave background has confirmed this prediction.
Moreover, inflation also predicts the creation of primordial
gravitational waves, which still remain undetectable.
Forthcoming high-precision measurements of the cosmic
microwave background [31] may measure effects of relic
gravitational waves, and this will be crucial to test the
inflationary paradigm and strongly constrain inflationary
models. Therefore, it is of crucial importance to scrutinize,
from all points of view, the quantitative predictions of
inflation.

In this work we have pointed out that, if quantum field
renormalization is taken into account, the predictions of
(single-field) slow-roll inflation for both the scalar and
tensorial power spectra change significantly. In our physi-
cal context, renormalization is naturally implemented in a
mode-by-mode subtraction scheme and uniquely defines
the momentum-space counterterms. These counterterms
are evaluated in the period when the perturbations acquire

classical properties and this leads to testable predictions
that differ significantly from the standard ones. Because of
the question of the underlying quantum nature of the
gravitational field, there are several ways one could think
about the process by which the dispersion spectrum of the
inflaton field influences the spectrum of the scalar pertur-
bations of the metric. One way is to think of the gravita-
tional field as making a measurement of each mode of the
inflaton fluctuation field within a few Hubble times of its
exit from the Hubble sphere. If this measurement of the
inflaton dispersion spectrum is similar to standard mea-
surements in quantum mechanics, then it should measure
the renormalized value of the inflaton spectrum at the time
when the measurement is carried out, which we take to be
the time when the perturbations acquire significant classi-
cal properties. The time t at which this occurs affects both
the scalar and tensorial power spectra, but for a large range
of values of t, the effect of renormalization remains sig-
nificant for wavelengths that today are at observable scales.
We have shown that if the power spectra are evaluated n e
folds after the Hubble radius exit time, where n 	 1=�,
then the observable parameters r and ns, nt, n

0
t are insensi-

tive to the value of n. If the power spectra were evaluated at
a time t well after the end of inflation, one would recover
the standard predictions. With the present understanding of
the nonlinear aspects of quantum gravity, it is difficult to
reach a definitive answer regarding the value of n, so the
fact that we find observable differences offers a deep way
to experimentally probe this question.
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