16,479 research outputs found

    Experimental determination of multipartite entanglement with incomplete information

    Full text link
    Multipartite entanglement is very poorly understood despite all the theoretical and experimental advances of the last decades. Preparation, manipulation and identification of this resource is crucial for both practical and fundamental reasons. However, the difficulty in the practical manipulation and the complexity of the data generated by measurements on these systems increase rapidly with the number of parties. Therefore, we would like to experimentally address the problem of how much information about multipartite entanglement we can access with incomplete measurements. In particular, it was shown that some types of pure multipartite entangled states can be witnessed without measuring the correlations [M. Walter et al., Science 340, 1205 (2013)] between parties, which is strongly demanding experimentally. We explore this method using an optical setup that permits the preparation and the complete tomographic reconstruction of many inequivalent classes of three- and four-partite entangled states, and compare complete versus incomplete information. We show that the method is useful in practice, even for non-pure states or non ideal measurement conditions.Comment: 12 pages, 7 figures. Close to published versio

    Design for Smooth Models over Complex Regions

    Get PDF

    Gluon mass generation without seagull divergences

    Get PDF
    Dynamical gluon mass generation has been traditionally plagued with seagull divergences, and all regularization procedures proposed over the years yield finite but scheme-dependent gluon masses. In this work we show how such divergences can be eliminated completely by virtue of a characteristic identity, valid in dimensional regularization. The ability to trigger the aforementioned identity hinges crucially on the particular Ansatz employed for the three-gluon vertex entering into the Schwinger-Dyson equation governing the gluon propagator. The use of the appropriate three-gluon vertex brings about an additional advantage: one obtains two separate (but coupled) integral equations, one for the effective charge and one for the gluon mass. This system of integral equations has a unique solution, which unambiguously determines these two quantities. Most notably, the effective charge freezes in the infrared, and the gluon mass displays power-law running in the ultraviolet, in agreement with earlier considerations.Comment: 37 pages, 9 figures; minor typos corrected and a few brief explanatory remarks adde

    Experimental investigation of dynamical invariants in bipartite entanglement

    Full text link
    The non-conservation of entanglement, when two or more particles interact, sets it apart from other dynamical quantities like energy and momentum. It does not allow the interpretation of the subtle dynamics of entanglement as a flow of this quantity between the constituents of the system. Here we show that adding a third party to a two-particle system may lead to a conservation law that relates the quantities characterizing the bipartite entanglement between each of the parties and the other two. We provide an experimental demonstration of this idea using entangled photons, and generalize it to N-partite GHZ states

    Indirect determination of the Kugo-Ojima function from lattice data

    Get PDF
    We study the structure and non-perturbative properties of a special Green's function, u(q), whose infrared behavior has traditionally served as the standard criterion for the realization of the Kugo-Ojima confinement mechanism. It turns out that, in the Landau gauge, u(q) can be determined from a dynamical equation, whose main ingredients are the gluon propagator and the ghost dressing function, integrated over all physical momenta. Using as input for these two (infrared finite) quantities recent lattice data, we obtain an indirect determination of u(q). The results of this mixed procedure are in excellent agreement with those found previously on the lattice, through a direct simulation of this function. Most importantly, in the deep infrared the function deviates considerably from the value associated with the realization of the aforementioned confinement scenario. In addition, the dependence of u(q), and especially of its value at the origin, on the renormalization point is clearly established. Some of the possible implications of these results are briefly discussed.Comment: 25 pages, 10 figures; v2: typos corrected, expanded version that matches the published articl

    Quark mixings as a test of a new symmetry of quark Yukawa couplings

    Get PDF
    Based on the hierarchy exhibited by quarks masses at low energies, we assume that Yukawa couplings of up and down quarks are related by YuYd2Y_u\propto Y_d^2 at grand unification scales. This ansatz gives rise to a symmetrical CKM matrix at the grand unification (GU) scale. Using three specific models as illustrative examples for the evolution down to low energies, we obtain the entries and asymmetries of the CKM matrix which are in very good agreement with their measured values. This indicates that the small asymmetry of the CKM matrix at low energies may be the effect of the renormalization group evolution only.Comment: LaTeX file, 10 pages including 1 tabl

    Spin phonon coupling in frustrated magnet CdCr2_2O4_4

    Full text link
    The infrared phonon spectrum of the spinel CdCr2O4 is measured as a function temperature from 6 K to 300K. The triply degenerate Cr phonons soften in the paramagnetic phase as temperature is lowered below 100 K and then split into a singlet and doublet in the low T antiferromagnetic phase which is tetragonally distorted to relieve the geometric frustration in the pyrochlore lattice of Cr3+^{3+} ions. The phonon splitting is inconsistent with the simple increase (decrease) in the force constants due to deceasing (increasing) bond lengths in the tetragonal phase. Rather they correspond to changes in the force constants due to the magnetic order in the antiferromagnetic state. The phonon splitting in this system is opposite of that observed earlier in ZnCr2O4 as predicted by theory. The magnitude of the splitting gives a measure of the spin phonon coupling strength which is smaller than in the case of ZnCr2O4.Comment: 4.2 pages, 4 figures, 1 reference added, submmite

    Stochastic emergence of inflaton fluctuations in a SdS primordial universe with large-scale repulsive gravity from a 5D vacuum

    Full text link
    We develop a stochastic approach to study scalar field fluctuations of the inflaton field in an early inflationary universe with a black-hole (BH), which is described by an effective 4D SdS metric. Considering a 5D Ricci-flat SdS static metric, we implement a planar coordinate transformation, in order to obtain a 5D cosmological metric, from which the effective 4D SdS metric can be induced on a 4D hypersurface. We found that at the end of inflation, the squared fluctuations of the inflaton field are not exactly scale independent and becomes sensitive with the mass of the BH.Comment: version accepted in European Physical Journal Plu

    Experimental investigation of linear-optics-based quantum target detection

    Full text link
    The development of new techniques to improve measurements is crucial for all sciences. By employing quantum systems as sensors to probe some physical property of interest allows the application of quantum resources, such as coherent superpositions and quantum correlations, to increase measurement precision. Here we experimentally investigate a scheme for quantum target detection based on linear optical measurment devices, when the object is immersed in unpolarized background light. By comparing the quantum (polarization-entangled photon pairs) and the classical (separable polarization states), we found that the quantum strategy provides us an improvement over the classical one in our experiment when the signal to noise ratio is greater than 1/40, or about 16dB of noise. This is in constrast to quantum target detection considering non-linear optical detection schemes, which have shown resilience to extreme amounts of noise. A theoretical model is developed which shows that, in this linear-optics context, the quantum strategy suffers from the contribution of multiple background photons. This effect does not appear in our classical scheme. By improving the two-photon detection electronics, it should be possible to achieve a polarization-based quantum advantage for a signal to noise ratio that is close to 1/400 for current technology.Comment: comments are welcome, submitted to PR
    corecore