Design for smooth models over complex regions

Peter Curtis and Hugo Maruri-Aguilar

Abstract Smooth supersaturated models are a modelling alternativeoimputer

experiments. They are polynomial models that behave likeespand allow fast

computations. In this contribution we use the Gram-Schimitttogonal decompo-
sition to build smooth supersaturated models over compgigions and then perform
a two stage modelling and design strategy. We apply our rdethgy in a complex

example taken from the literature of soap film smoothing.

1 Introduction

Interpolating splines were first proposed by Schoenberg4)18nd they are defined
as the solutiory(x) that minimizes a measure of roughnd&4gy) given by

b
Ynly) = | (/™) (1)

when searching among all interpolating functions for a gigata set, see [10]. This
problem is solved with interpolating polynomial splinesdafgree th— 1. We are
interested in the case involving second derivativesni.e: 2 and the interpolating
spline is a cubic spline [5].

Thin plate splines extend the theory of splines for muliatarx. They mini-
mize an extension of the criterid# above, which in the bivariate casets(y) =
[f ((32)2 +2 ( 0%y )2 + (azy)Z) dx,dxo, where the integral is computed over
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all R?, see [8, 7]. If interpolation is not required, spline smaoghmay be used to
model and the criterion to minimize is a linear combinatidrthe residual sum of
squares and the roughness measiresee [11]. A polynomial regression alterna-
tive undery% constraints is described in [2]. The literature for splinedwlling and
smoothing is vast, we refer the reader to [11, 5].

This paper is concerned with design for smooth supersatlirabdels (SSM).
These models are polynomial interpolators that minimizesdime measure of cur-
vature used for splines and are thus competitive alteremtio splines. SSM are
linear polynomials of high degree with more terms than thalper of observations,
and those extra degrees of freedom are used to achieve a-fkérbehavior over
a specified smoothing region, see [3]. Although the convergeo splines is guar-
anteed asymptotically [1], in practice a good approxinratio splines is achieved
after adding a few extra terms thus the computational coSiSW¥ is not particu-
larly burdensome. The smoothing region for SSM can be aritrdefined to allow
modelling over difficult, non-standard regions.

In this contribution we study two specific aspects involvBgM. The first is to
build orthogonal bases for our model. This is achieved by anGG&chmidt proce-
dure. Having an orthogonal SSM enables us to efficiently hade tackle design
for smoothness criteria in non-standard regions and thikessecond aspect we
study. This paper is a first attempt to use SSM for non-stah@gions, where spline
and smoothing methodology is still largely under developing®, 12, 13]. To the
best of our knowledge no attempts on design have been prddacaon-standard
regions, and we differentiate from the literature on design spline models [14, 6].

The order of the paper is as follows. We first review the SSVhoetwith em-
phasis on one dimensional computations for the sake of tigréile present an
orthogonalization procedure for the SSM bases. We thelfflyostate the general
multidimensional SSM and establish our design approachillastrate with a non-
standard example and the roughness med#uréhis same example is reworked to
allow direct comparison with soap film smoothing [13] whemstead of usingt
we average a distortion measure over a region of interest:

//( X2+ >2dx1dx2. (2)

2 Smooth supersaturated model

Consider the problem of finding an interpolatorrt@ata points while simultane-
ously minimizing a measure of roughness. Note than rattear $earching over the
space of functions with second derivatives, we are usingnaohial functions and
thus the existence of second derivatives is guaranteeciddtielopment that fol-
lows. Indeed the vector spaces implied by our models arel®obpaces [11]. They
admit a seminorm induced in our caseyas shown below.
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2.1 Polynomial formulation and roughness computation

The available data i$x1,y1),. .., (Xn,¥n), Where no two values of factoc are re-
peated. Let the interpolator be the following polynomiakiwith real coefficients

y(x) = f()76 = Nz: 6x ©)

with f(x)7 = (1,x,%%,...,xN"1) and8" = (6y,...,0n_1). We assume thatl > n,
i.e. the model has more terms than data points. We computiettign-model matrix
X which is of sizen x N. To computeds we need the following definition.

Definition 1. Let 2" C R be a closed bounded region; &%) andt(x) be univariate
polynomial functions. We defings(x),t(x)) := [, 8" (x)t”(x)dx.

The roughness of a polynomig(x) is Y5(y) = (v,y). The following Lemma
establishes the roughnessydk). We omit the proof and give an example of it.

Lemma 1. Let y(x), 6 and f(x) be asin Equation (3). Let K be the matrix of inner
products (X', x)) fori,j=0,...,N—1. Then

1. The roughness of y(x) is Y5(y) = 67K 8, and

2. Thematrix K isof theformK = DDMDTDT where M isthe usual moment matrix
of termsin f(x), computed over theregion 2". Thematrix D isa square matrix of
size N with zero entries apart fromentry Dj1; that equalsi for i =1,...,N—1.

Example 1. Consider2™ = [0,1] and the model of Equation (3) witN = 4, i.e.
f(x) = (1,x,x%,x3)T and@T = (6, 61, 65, 63). The matricex, D andM are

000 0 0000 1 1/21/31/4
[o00 0| . (1000 (121317415
K=1004 6| P=|0200|2M=1|1/31/21/516 |
00612 0030 1/41/5 1/6 1/7

so that4s(y) = 6TKO = 467 + 126,65 + 1262. We also verify the resulK =
DDMD'DT. Note thatDf(x) = (0,1,2x,3x)T andDDf(x) = (0,0,2,6x)" which
are the vectors of first and second derivatives of element$0f respectively.

In general, the absence of coefficiefgsand 6; in Y4 reflects the fact that the
constant and linear term do not contribute to roughnesseaithdel. Consequently,
the matrixK has two rows and columns of zeroes.

Furthermore, the integrdl,-) of Definition 1 is a linear operator that satisfies
symmetry and non-negativity properties. However it is nfotliesscalar product over
the space of polynomials as it is possible that this integgalkls zero despite using
non-zero polynomial functions, e.¢L,x) = 0. For our purposes, this fact does not
mean that we cannot include terms with zero roughness, &dhgfiability of such
terms is guaranteed by the design makixnder mild conditions.
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2.2 The constrained quadratic optimization

We now establish the SSM problem as a quadratic problem ipdhemeters [3].
Minimization of 44 subject to interpolation conditions is equivalent to miizien
67K O subject toX0 =Y, whereY is a vector collecting all response values =
(Y1,--.,¥n) and thusX6 =Y represents all interpolation conditions. Using standard
constrained optimization techniques, the solution isiolkthfrom the linear system:

(i) ()= (o) @

whereA is a vector of Lagrange multipliers for the interpolatiomstraints. Exis-
tence of the solution of the above system is straightforwardnK andX are full
rank. For the case whéfis not full rank, a condition is imposed on the rankxaf
This technical condition is mild and does not restrict thpligability of SSM.

The inverse of the left hand side matrix in (4) can be writteblbck form as

0 X\ " /—QHT

XT K “\H P
with matricesQ, H, P that satisfy conditionXH = I, XP = Onn XTQ=KH and
XTHT + KP = Iy andl,, Iy are identity matrices of sizesandN. The parame-

ter estimates ar6* = HY, and the minimum value of roughness achieved by the
polynomial model i$ty = YTQYv, see [1].

2.3 Gram-Schmidt ortogonalization of SSM bases

The linear system at the core of SSM methodology can be inggrovseveral ways
depending on the choice of polynomial bases. The objedite linearly transform
the bases to achieve a more stable or sparse version of &iq(4li

A starting point is to use monomials fr{x), as we have done. Monomials have a
simple interpretation yet the system in (4) is not sparsee@gd option are orthog-
onal polynomials over?’, e.g. if 2" = [—1,1] we would use Legendre polynomi-
als. Use of Legendre polynomidlg(x) as building elements df(x), so it becomes
f(x)T = (Lo(X),...,Ln_1(X)), implies a more sparse system, particularly on the ma-
trix K but there is no guarantee théatwill be more sparse. In a multivariate setting
Legendre polynomials have the aditional advantage of siypd sensitivity analy-
ses. Another option is to perform Gram-Schmidt orthogaadilbn over the columns
of X which will not necessarily guarantee simplification of thatrix K.

An alternative we pursue here is orthogonalization of th&saising the inner
product(,-) of Definition 1. We give below a Gram-Schmidt orthogonalizatal-
gorithm for a set of terms such that the matdof inner dot products is full rank.
For simplicity we write e.gf; instead off;(x).
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Input A list of polynomialsgy,...,gr such that th&k matrix of inner products
(gi,9;j) is full rank.

Output  Alist of (-,-)-orthonormal polynomialdy, ..., f;.

Initialization  Seti := 1 and standardizé :=g1/+/(091,01).

Step1 Projecth; ;=g — zij;ll<gi, f;) f; and standardizé := h;//(h;, h;).

Step 2 Updatei :=i+ 1. Ifi <r repeat from Step 1.

Example 2. Consider the monomial term&, x3,x* x®> and the region2” = [0, 1].
The matrixK is fuII rank and after applying the above algorithm we refti¢he

list of polynomials’s %(x3—§x2),§(x472x3+x2),f(5 X+ 23 - 1x2).

TheK matrix for this new list of polynomial model terms is the idignof size four.

Starting with full rankK, the K matrix for the updated basis is an identity ma-
trix. We can still accomodate terms that have zero inneryxrbds long as they are
linearly independent, and the algorithm above works by Birapoiding the stan-
dardization step. For the list of termsxl. .., x°, we would only append the terms
1,xto the list of Example 2.

3 Multivariate SSM

For multiple input variables, SSM extend easily by usingdmiehical polynomials,
i.e. if aterm is included in the model, all its divisors areaincluded. Consided
input variablesx, ..., Xc<. A monomial is the power produst’ = xfl .- -xgk where
a1,...,0x are non negative integer exponents collected in the expametor a.
The starting point is a hierarchical multivariate polynamivritten as

X) = a% By X7,

wherelL is a list of N exponents satisfying the hierarchy restriction &gds the co-
efficient of monomial ternx?. For example, the bivariate polynomi@yy+ 610%1 +
Bo1x2 + B11x1%2 has list of exponents = {(0,0), (1,0),(0,1),(1,1)} and is written
asf(x)T@ with f(x)T = (1,x1,%,X1%2) and@" = (6o, B10, o1, O11).

Over a closed, bounded regioti  RK, the measure of roughness extends to

y)= [, triH(y)?)ax ©)

whereH (y) is the Hessian matrix of. The bivariate thin plate splines criterion is
precisely an instance of this definition 8%, and the main difference is that the
integration regionZ” we consider is finite.

This multivariate roughness measure extends the innewptaxrf Definition 1

to (s(x),t(X)) := o 3i; gx,sé;((, gx,tzgx) dx, where the sum is performed over all pairs

i, j taking values from 1.. k. Model roughness is the famili&ib(y) = (y,y). The
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computation of th& matrix and the Gram-Schmidt algorithm of Section 2.3 fokow
with little change. We next give a bivariate example.

Example 3. Consider the bivariate regioft” = [0,1]? and the list of term:x%xlxz,
X2, X3, X2%, andx;x3. TheK matrix of inner products between elements in the list is

400 620
020 022
004 002
6001230
220 342
022 024

The first three terms are already pairwise orthogonal angt oeked standard-
isation so we haved/2,x;x2/+/2, x3/2. Completing the algorithm we obtain
(33— 3x2/2) //3, X3x%p — XaXo — X3 /2 andxyX§ — X5/2 — X1 X. The matrixK for this
new list of model terms is the identity of size six. Mirrorilogr previous results,
constant and linear termsx, X, have all zero roughness and if included would
produce three rows and columns of zeroeKin

The construction of SSM over a complex regigf gravitates around efficient
computation of thé& matrix. By a multivariate version of Lemma 1, this construc-
tion relates to the matrix of moments ové&r. A simple proposal that has worked
well is to divide the complex regiof2” into non-overlapping boxes so moments are
computed with simple formulas for each box and then addetbrAliis initial step
we compute the matriK. We use the Gram-Schmidt algorithm to obtain an orthog-
onal polynomial basis so that the nénis a diagonal matrix with a few diagonal
zeroes (for constant and linear terms) and the rest of deganries take value one.
Computation o* and¥%; uses the same formulee as the univariate case.

4 Designing for smooth models in complex regions

Recall that the observed roughness of the SS¥is= YTQY. A simple proposal to
design for smoothness is to minimize a function of the eigkres of the matrix.
Here we usep(Q) =tr(Q) which equals the sum of eigenvalues<pand minimizes
the expected roughne$s under general conditions, see [1].

Computation of matriXQ and its eigenvalues does not depend on the actual data
values, see the development in Section 2.2. At least twgdediernatives are pos-
sible here. One is to select an initial design with pointg thaimize ¢(Q). The
alternative we pursued is that given an initial design thsakeapt fixed, select a
number of additional points that minimiz&Q).

In the examples below a synthetic function was used. Seesthpdnel of Fig-
ure 1 for a depiction of the Ramsay horseshoe test functiph3p shown as con-
tours over the non-standard regigfi. Validation errors were computed to establish
an empirical measure of model fit.
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Fig. 1 Original function, sequential fité5, J and non-sequential soap film fit (from left).

4.1 Design using roughness 4

Using the roughness measutg and an initial set oh = 33 random points over
the region.2”, a SSM withN = 70 terms was fit to the data. To compute te
matrix, the regionZ” was partitioned in boxes. At this stage, validation errongis
30 further random points produced RMSH.377. The variance of predicted values
was 0145.

From a a set of 1000 random candidate points, five extra paiets selected at
random. The value of criteriop(Q) was recorded and the procedure repeated 10000
times. The best set of extra points was kept. The augmengigrdelaces points in
sensible places and with the same 30 extra random validatorts produced a
better model with RMSE= 0.322 and variance of predicted values of@ which
shows an improved consistency across the region. Furthieritne RMSE is 22%
of the data range, well within an informal rule of thumb of 5Phe centre left panel
of Figure 1 gives both initial and second stage designs egetith the final fit.

4.2 Design for distortion J

The distortion criterion for soap film smoothidgy) of Equation (2) can be written
as a seminorm, different than that fés. We applied SSM techniques using this
criterion under similar conditions as the previous studhe hitial fit with validation
RMSE = 2.034 and variance of predictionsd®3. Using a similar procedure as in
Section 4.1, five extra design points were generated to peodn updated model
with similar validation errors RMSE 2.091 and variance of predictiongd$1. The
performance of SSM under distorsidrsuffers from the fact that the matri« for J
has very low rank compared with thkematrix for roughnes4. Indeed for the same
data and settings, the rankkfunderJ is 32 while unde# is 67. This phenomenon
creates aliasing of terms and very few terms are being usednionize distortion
thus the method is both inefficient and prone to instability.

A non-sequential soap film smoother [13] is clearly supeviith RMSE =
0.0868 and variance of predictionsD077, see Figure 1. In addition to the inesta-



8 Peter Curtis and Hugo Maruri-Aguilar

bility and alisaing described, our SSMprocedure does not address the boundary

conditions of soap film so this underperformance is to be ewge

5 Discussion and future work

The use of orthonormal bases enables the S&Nhethod to be applied in non-
standard regions with reasonable fit. We provided a simpkpanse independent
sequential design for smoothness in such case. Our methausiatile and works
well in a variety of situations, being particularly suitedsensitivity analyses [1]. In
the soap film example, poor performance of S$ian be attributed in part to the
fact that we did not incorpore boundary conditions. A pdssolution to this is to
use Hermite interpolators [4], which is possible when therftary is an algebraic
variety.
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