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Abstract Smooth supersaturated models are a modelling alternative for computer
experiments. They are polynomial models that behave like splines and allow fast
computations. In this contribution we use the Gram-Schmidtorthogonal decompo-
sition to build smooth supersaturated models over complex regions and then perform
a two stage modelling and design strategy. We apply our methodology in a complex
example taken from the literature of soap film smoothing.

1 Introduction

Interpolating splines were first proposed by Schoenberg (1964) and they are defined
as the solutiony(x) that minimizes a measure of roughnessΨm(y) given by

Ψm(y) =
∫ b

a
(y(m))2dx (1)

when searching among all interpolating functions for a given data set, see [10]. This
problem is solved with interpolating polynomial splines ofdegree 2m−1. We are
interested in the case involving second derivatives, i.e.m = 2 and the interpolating
spline is a cubic spline [5].

Thin plate splines extend the theory of splines for multivariate x. They mini-
mize an extension of the criterionΨ2 above, which in the bivariate case isΨ2(y) =
∫ ∫

(

(

∂2y
∂x2

1

)2
+2

(

∂2y
∂x1∂x2

)2
+
(

∂2y
∂x2

2

)2
)

dx1dx2, where the integral is computed over
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all R2, see [8, 7]. If interpolation is not required, spline smoothing may be used to
model and the criterion to minimize is a linear combination of the residual sum of
squares and the roughness measureΨ2, see [11]. A polynomial regression alterna-
tive underΨ2 constraints is described in [2]. The literature for spline modelling and
smoothing is vast, we refer the reader to [11, 5].

This paper is concerned with design for smooth supersaturated models (SSM).
These models are polynomial interpolators that minimize the same measure of cur-
vature used for splines and are thus competitive alternatives to splines. SSM are
linear polynomials of high degree with more terms than the number of observations,
and those extra degrees of freedom are used to achieve a spline-like behavior over
a specified smoothing region, see [3]. Although the convergence to splines is guar-
anteed asymptotically [1], in practice a good approximation to splines is achieved
after adding a few extra terms thus the computational cost ofSSM is not particu-
larly burdensome. The smoothing region for SSM can be arbitrarily defined to allow
modelling over difficult, non-standard regions.

In this contribution we study two specific aspects involvingSSM. The first is to
build orthogonal bases for our model. This is achieved by a Gram-Schmidt proce-
dure. Having an orthogonal SSM enables us to efficiently model and tackle design
for smoothness criteria in non-standard regions and this isthe second aspect we
study. This paper is a first attempt to use SSM for non-standard regions, where spline
and smoothing methodology is still largely under development, [9, 12, 13]. To the
best of our knowledge no attempts on design have been produced for non-standard
regions, and we differentiate from the literature on designs for spline models [14, 6].

The order of the paper is as follows. We first review the SSM method, with em-
phasis on one dimensional computations for the sake of brevity. We present an
orthogonalization procedure for the SSM bases. We then briefly state the general
multidimensional SSM and establish our design approach andillustrate with a non-
standard example and the roughness measureΨ2. This same example is reworked to
allow direct comparison with soap film smoothing [13] where instead of usingΨ2

we average a distortion measure over a region of interest:

J(y) =
∫ ∫

(

∂ 2y

∂x2
1

+
∂ 2y

∂x2
2

)2

dx1dx2. (2)

2 Smooth supersaturated model

Consider the problem of finding an interpolator ton data points while simultane-
ously minimizing a measure of roughness. Note than rather than searching over the
space of functions with second derivatives, we are using polynomial functions and
thus the existence of second derivatives is guaranteed in the development that fol-
lows. Indeed the vector spaces implied by our models are Sobolev spaces [11]. They
admit a seminorm induced in our case byΨ2 as shown below.
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2.1 Polynomial formulation and roughness computation

The available data is(x1,y1), . . . ,(xn,yn), where no two values of factorx are re-
peated. Let the interpolator be the following polynomial inx with real coefficients

y(x) = f (x)T θ =
N−1

∑
i=0

θix
i (3)

with f (x)T = (1,x,x2, . . . ,xN−1) andθT = (θ0, . . . ,θN−1). We assume thatN > n,
i.e. the model has more terms than data points. We compute thedesign-model matrix
X which is of sizen×N. To computeΨ2 we need the following definition.

Definition 1. Let X ⊂R be a closed bounded region; lets(x) andt(x) be univariate
polynomial functions. We define〈s(x), t(x)〉 :=

∫

X
s′′(x)t ′′(x)dx.

The roughness of a polynomialy(x) is Ψ2(y) = 〈y,y〉. The following Lemma
establishes the roughness ofy(x). We omit the proof and give an example of it.

Lemma 1. Let y(x),θ and f (x) be as in Equation (3). Let K be the matrix of inner
products 〈xi,x j〉 for i, j = 0, . . . ,N −1. Then

1. The roughness of y(x) is Ψ2(y) = θT Kθ , and
2. The matrix K is of the form K =DDMDT DT where M is the usual moment matrix

of terms in f (x), computed over the region X . The matrix D is a square matrix of
size N with zero entries apart from entry Di+1,i that equals i for i = 1, . . . ,N −1.

Example 1. ConsiderX = [0,1] and the model of Equation (3) withN = 4, i.e.
f (x) = (1,x,x2,x3)T andθT = (θ0,θ1,θ2,θ3). The matricesK,D andM are

K =









0 0 0 0
0 0 0 0
0 0 4 6
0 0 6 12









, D =









0 0 0 0
1 0 0 0
0 2 0 0
0 0 3 0









andM =









1 1/2 1/3 1/4
1/2 1/3 1/4 1/5
1/3 1/4 1/5 1/6
1/4 1/5 1/6 1/7









,

so thatΨ2(y) = θT Kθ = 4θ2
2 + 12θ2θ3 + 12θ2

3 . We also verify the resultK =
DDMDT DT . Note thatD f (x) = (0,1,2x,3x3)T andDD f (x) = (0,0,2,6x)T which
are the vectors of first and second derivatives of elements off (x), respectively.

In general, the absence of coefficientsθ0 andθ1 in Ψ2 reflects the fact that the
constant and linear term do not contribute to roughness of the model. Consequently,
the matrixK has two rows and columns of zeroes.

Furthermore, the integral〈·, ·〉 of Definition 1 is a linear operator that satisfies
symmetry and non-negativity properties. However it is not afull scalar product over
the space of polynomials as it is possible that this integralequals zero despite using
non-zero polynomial functions, e.g.〈1,x〉 = 0. For our purposes, this fact does not
mean that we cannot include terms with zero roughness, as theidentifiability of such
terms is guaranteed by the design matrixX under mild conditions.
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2.2 The constrained quadratic optimization

We now establish the SSM problem as a quadratic problem in theparameters [3].
Minimization of Ψ2 subject to interpolation conditions is equivalent to minimize
θT Kθ subject toXθ = Y, whereY is a vector collecting all response valuesY T =
(y1, . . . ,yn) and thusXθ = Y represents all interpolation conditions. Using standard
constrained optimization techniques, the solution is obtained from the linear system:

(

0 X
XT K

)(

λ
θ

)

=

(

Y
0

)

, (4)

whereλ is a vector of Lagrange multipliers for the interpolation constraints. Exis-
tence of the solution of the above system is straightforwardwhenK andX are full
rank. For the case whenK is not full rank, a condition is imposed on the rank ofX .
This technical condition is mild and does not restrict the applicability of SSM.

The inverse of the left hand side matrix in (4) can be written in block form as

(

0 X
XT K

)−1

=

(

−Q HT

H P

)

with matricesQ,H,P that satisfy conditionsXH = In, XP = 0n,N XT Q = KH and
XT HT +KP = IN and In, IN are identity matrices of sizesn and N. The parame-
ter estimates areθ∗ = HY , and the minimum value of roughness achieved by the
polynomial model isΨ∗

2 = Y T QY , see [1].

2.3 Gram-Schmidt ortogonalization of SSM bases

The linear system at the core of SSM methodology can be improved in several ways
depending on the choice of polynomial bases. The objective is to linearly transform
the bases to achieve a more stable or sparse version of Equation (4).

A starting point is to use monomials inf (x), as we have done. Monomials have a
simple interpretation yet the system in (4) is not sparse. A second option are orthog-
onal polynomials overX , e.g. if X = [−1,1] we would use Legendre polynomi-
als. Use of Legendre polynomialsLi(x) as building elements off (x), so it becomes
f (x)T = (L0(x), . . . ,LN−1(x)), implies a more sparse system, particularly on the ma-
trix K but there is no guarantee thatX will be more sparse. In a multivariate setting
Legendre polynomials have the aditional advantage of simplifying sensitivity analy-
ses. Another option is to perform Gram-Schmidt orthogonalization over the columns
of X which will not necessarily guarantee simplification of the matrix K.

An alternative we pursue here is orthogonalization of the basis, using the inner
product〈·, ·〉 of Definition 1. We give below a Gram-Schmidt orthogonalization al-
gorithm for a set of terms such that the matrixK of inner dot products is full rank.
For simplicity we write e.g.f1 instead off1(x).
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Input A list of polynomialsg1, . . . ,gr such that theK matrix of inner products
〈gi,g j〉 is full rank.

Output A list of 〈·, ·〉-orthonormal polynomialsf1, . . . , fr.
Initialization Seti := 1 and standardizef1 := g1/

√

〈g1,g1〉.
Step 1 Projecthi := gi −∑i−1

j=1〈gi, f j〉 f j and standardizefi := hi/
√

〈hi,hi〉.
Step 2 Updatei := i+1. If i ≤ r repeat from Step 1.

Example 2. Consider the monomial termsx2,x3,x4,x5 and the regionX = [0,1].
The matrixK is full rank and after applying the above algorithm we retrieve the
list of polynomialsx2

2 ,
1√
3
(x3− 3

2x2),
√

5
2 (x4−2x3+x2),

√
7
(

x5− 5
2x4+2x3− 1

2x2
)

.

TheK matrix for this new list of polynomial model terms is the identity of size four.

Starting with full rankK, theK matrix for the updated basis is an identity ma-
trix. We can still accomodate terms that have zero inner product as long as they are
linearly independent, and the algorithm above works by simply avoiding the stan-
dardization step. For the list of terms 1,x, . . . ,x5, we would only append the terms
1,x to the list of Example 2.

3 Multivariate SSM

For multiple input variables, SSM extend easily by using hierarchical polynomials,
i.e. if a term is included in the model, all its divisors are also included. Considerk
input variablesx1, . . . ,xk. A monomial is the power productxα = xα1

1 · · ·xαk
k where

α1, . . . ,αk are non negative integer exponents collected in the exponent vectorα .
The starting point is a hierarchical multivariate polynomial, written as

y(x) = ∑
α∈L

θα xα ,

whereL is a list ofN exponents satisfying the hierarchy restriction andθα is the co-
efficient of monomial termxα . For example, the bivariate polynomialθ00+θ10x1+
θ01x2+θ11x1x2 has list of exponentsL = {(0,0),(1,0),(0,1),(1,1)} and is written
as f (x)T θ with f (x)T = (1,x1,x2,x1x2) andθT = (θ00,θ10,θ01,θ11).

Over a closed, bounded regionX ⊂ R
k, the measure of roughness extends to

Ψ2(y) =
∫

X

tr(H(y)2)dx (5)

whereH(y) is the Hessian matrix ofy. The bivariate thin plate splines criterion is
precisely an instance of this definition ofΨ2, and the main difference is that the
integration regionX we consider is finite.

This multivariate roughness measure extends the inner product of Definition 1

to 〈s(x), t(x)〉 :=
∫

X ∑i, j
∂2s(x)
∂xi∂x j

∂2t(x)
∂xi∂x j

dx, where the sum is performed over all pairs

i, j taking values from 1, . . . ,k. Model roughness is the familiarΨ2(y) = 〈y,y〉. The
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computation of theK matrix and the Gram-Schmidt algorithm of Section 2.3 follows
with little change. We next give a bivariate example.

Example 3. Consider the bivariate regionX = [0,1]2 and the list of termsx2
1,x1x2,

x2
2, x3

1,x
2
1x2 andx1x2

2. TheK matrix of inner products between elements in the list is

K =

















4 0 0 6 2 0
0 2 0 0 2 2
0 0 4 0 0 2
6 0 0 12 3 0
2 2 0 3 4 2
0 2 2 0 2 4

















.

The first three terms are already pairwise orthogonal and only need standard-
isation so we havex2

1/2,x1x2/
√

2, x2
2/2. Completing the algorithm we obtain

(

x3
1−3x2

1/2
)

/
√

3, x2
1x2−x1x2−x2

1/2 andx1x2
2−x2

2/2−x1x2. The matrixK for this
new list of model terms is the identity of size six. Mirroringour previous results,
constant and linear terms 1,x1,x2 have all zero roughness and if included would
produce three rows and columns of zeroes inK.

The construction of SSM over a complex regionX gravitates around efficient
computation of theK matrix. By a multivariate version of Lemma 1, this construc-
tion relates to the matrix of moments overX . A simple proposal that has worked
well is to divide the complex regionX into non-overlapping boxes so moments are
computed with simple formulas for each box and then added. After this initial step
we compute the matrixK. We use the Gram-Schmidt algorithm to obtain an orthog-
onal polynomial basis so that the newK is a diagonal matrix with a few diagonal
zeroes (for constant and linear terms) and the rest of diagonal entries take value one.
Computation ofθ∗ andΨ∗

2 uses the same formulæ as the univariate case.

4 Designing for smooth models in complex regions

Recall that the observed roughness of the SSM isΨ∗
2 =Y T QY . A simple proposal to

design for smoothness is to minimize a function of the eigenvalues of the matrixQ.
Here we useφ(Q) = tr(Q) which equals the sum of eigenvalues ofQ and minimizes
the expected roughnessΨ2 under general conditions, see [1].

Computation of matrixQ and its eigenvalues does not depend on the actual data
values, see the development in Section 2.2. At least two design alternatives are pos-
sible here. One is to select an initial design with points that minimize φ(Q). The
alternative we pursued is that given an initial design th at is kept fixed, select a
number of additional points that minimizeφ(Q).

In the examples below a synthetic function was used. See the left panel of Fig-
ure 1 for a depiction of the Ramsay horseshoe test function [9, 13], shown as con-
tours over the non-standard regionX . Validation errors were computed to establish
an empirical measure of model fit.
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Fig. 1 Original function, sequential fitsΨ2, J and non-sequential soap film fit (from left).

4.1 Design using roughness Ψ2

Using the roughness measureΨ2 and an initial set ofn = 33 random points over
the regionX , a SSM withN = 70 terms was fit to the data. To compute theK
matrix, the regionX was partitioned in boxes. At this stage, validation error using
30 further random points produced RMSE= 0.377. The variance of predicted values
was 0.145.

From a a set of 1000 random candidate points, five extra pointswere selected at
random. The value of criterionφ(Q) was recorded and the procedure repeated 10000
times. The best set of extra points was kept. The augmented design places points in
sensible places and with the same 30 extra random validationpoints produced a
better model with RMSE= 0.322 and variance of predicted values of 0.106 which
shows an improved consistency across the region. Furthermore, the RMSE is 3.22%
of the data range, well within an informal rule of thumb of 5%.The centre left panel
of Figure 1 gives both initial and second stage designs together with the final fit.

4.2 Design for distortion J

The distortion criterion for soap film smoothingJ(y) of Equation (2) can be written
as a seminorm, different than that forΨ2. We applied SSM techniques using this
criterion under similar conditions as the previous study. The initial fit with validation
RMSE= 2.034 and variance of predictions 3.983. Using a similar procedure as in
Section 4.1, five extra design points were generated to produce an updated model
with similar validation errors RMSE= 2.091 and variance of predictions 4.061. The
performance of SSM under distorsionJ suffers from the fact that the matrixK for J
has very low rank compared with theK matrix for roughnessΨ2. Indeed for the same
data and settings, the rank ofK underJ is 32 while underΨ2 is 67. This phenomenon
creates aliasing of terms and very few terms are being used tominimize distortion
thus the method is both inefficient and prone to instability.

A non-sequential soap film smoother [13] is clearly superiorwith RMSE=
0.0868 and variance of predictions 0.0077, see Figure 1. In addition to the inesta-
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bility and alisaing described, our SSM-J procedure does not address the boundary
conditions of soap film so this underperformance is to be expected.

5 Discussion and future work

The use of orthonormal bases enables the SSM-Ψ2 method to be applied in non-
standard regions with reasonable fit. We provided a simple, response independent
sequential design for smoothness in such case. Our method isversatile and works
well in a variety of situations, being particularly suited to sensitivity analyses [1]. In
the soap film example, poor performance of SSM-J can be attributed in part to the
fact that we did not incorpore boundary conditions. A potential solution to this is to
use Hermite interpolators [4], which is possible when the boundary is an algebraic
variety.
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