4,567 research outputs found

    Studies of Stability and Robustness for Artificial Neural Networks and Boosted Decision Trees

    Get PDF
    In this paper, we compare the performance, stability and robustness of Artificial Neural Networks (ANN) and Boosted Decision Trees (BDT) using MiniBooNE Monte Carlo samples. These methods attempt to classify events given a number of identification variables. The BDT algorithm has been discussed by us in previous publications. Testing is done in this paper by smearing and shifting the input variables of testing samples. Based on these studies, BDT has better particle identification performance than ANN. The degradation of the classifications obtained by shifting or smearing variables of testing results is smaller for BDT than for ANN.Comment: 23 pages, 13 figure

    Spiral Disk Instability Can Drive Thermonuclear Explosions in Binary White Dwarf Mergers

    Full text link
    Thermonuclear, or Type Ia supernovae (SNe Ia), originate from the explosion of carbon--oxygen white dwarfs, and serve as standardizable cosmological candles. However, despite their importance, the nature of the progenitor systems that give rise to SNe Ia has not been hitherto elucidated. Observational evidence favors the double-degenerate channel in which merging white dwarf binaries lead to SNe Ia. Furthermore, significant discrepancies exist between observations and theory, and to date, there has been no self-consistent merger model that yields a SNe Ia. Here we show that a spiral mode instability in the accretion disk formed during a binary white dwarf merger leads to a detonation on a dynamical timescale. This mechanism sheds light on how white dwarf mergers may frequently yield SNe Ia.Comment: Final version (as in ApJL) with minor edit

    Boosted Decision Trees as an Alternative to Artificial Neural Networks for Particle Identification

    Full text link
    The efficacy of particle identification is compared using artificial neutral networks and boosted decision trees. The comparison is performed in the context of the MiniBooNE, an experiment at Fermilab searching for neutrino oscillations. Based on studies of Monte Carlo samples of simulated data, particle identification with boosting algorithms has better performance than that with artificial neural networks for the MiniBooNE experiment. Although the tests in this paper were for one experiment, it is expected that boosting algorithms will find wide application in physics.Comment: 6 pages, 5 figures; Accepted for publication in Nucl. Inst. & Meth.

    The Post-Merger Magnetized Evolution of White Dwarf Binaries: The Double-Degenerate Channel of Sub-Chandrasekhar Type Ia Supernovae and the Formation of Magnetized White Dwarfs

    Get PDF
    Type Ia supernovae (SNe Ia) play a crucial role as standardizable cosmological candles, though the nature of their progenitors is a subject of active investigation. Recent observational and theoretical work has pointed to merging white dwarf binaries, referred to as the double-degenerate channel, as the possible progenitor systems for some SNe Ia. Additionally, recent theoretical work suggests that mergers which fail to detonate may produce magnetized, rapidly-rotating white dwarfs. In this paper, we present the first multidimensional simulations of the post-merger evolution of white dwarf binaries to include the effect of the magnetic field. In these systems, the two white dwarfs complete a final merger on a dynamical timescale, and are tidally disrupted, producing a rapidly-rotating white dwarf merger surrounded by a hot corona and a thick, differentially-rotating disk. The disk is strongly susceptible to the magnetorotational instability (MRI), and we demonstrate that this leads to the rapid growth of an initially dynamically weak magnetic field in the disk, the spin-down of the white dwarf merger, and to the subsequent central ignition of the white dwarf merger. Additionally, these magnetized models exhibit new features not present in prior hydrodynamic studies of white dwarf mergers, including the development of MRI turbulence in the hot disk, magnetized outflows carrying a significant fraction of the disk mass, and the magnetization of the white dwarf merger to field strengths 2×108\sim 2 \times 10^8 G. We discuss the impact of our findings on the origins, circumstellar media, and observed properties of SNe Ia and magnetized white dwarfs.Comment: Accepted ApJ version published on 8/20/13, with significant additional text added discussing the nature of the magnetized outflows, and possible CSM observational features relevant to NaID detection

    Studies of Boosted Decision Trees for MiniBooNE Particle Identification

    Full text link
    Boosted decision trees are applied to particle identification in the MiniBooNE experiment operated at Fermi National Accelerator Laboratory (Fermilab) for neutrino oscillations. Numerous attempts are made to tune the boosted decision trees, to compare performance of various boosting algorithms, and to select input variables for optimal performance.Comment: 28 pages, 22 figures, submitted to Nucl. Inst & Meth.

    One-armed spiral instability in double-degenerate post-merger accretion disks

    Get PDF
    This is the author accepted manuscript. The final version is available from IOP Publishing via the DOI in this record.Increasing observational and theoretical evidence points to binary white dwarf mergers as the origin of some if not most normal Type Ia supernovae (SNe Ia). In this paper, we discuss the post-merger evolution of binary white dwarf (WD) mergers, and their relevance to the double-degenerate channel of SNe Ia. We present 3D simulations of carbon-oxygen (C/O) WD binary systems undergoing unstable mass transfer, varying both the total mass and the mass ratio. We demonstrate that these systems generally give rise to a one-armed gravitational spiral instability. The spiral density modes transport mass and angular momentum in the disk even in the absence of a magnetic field, and are most pronounced for secondary-to-primary mass ratios larger than 0.6. We further analyze carbon burning in these systems to assess the possibility of detonation. Unlike the case of a 1.1 + 1.0M C/O WD binary, we find that WD binary systems with lower mass and smaller mass ratios do not detonate as SNe Ia up to ∼ 8−22 outer dynamical times. Two additional models do however undergo net heating, and their secular increase in temperature could possibly result in a detonation on timescales longer than those considered hereWe thank James Guillochon, Daan Van Rossum, Chris Byrohl, and Pranav Dave for useful discussions. We also would like to thank the anonymous reviewer for their useful comments and insights. The work of EG-B, GA-S and PL-A was partially funded by MINECO AYA2014-59084-P grant and by the AGAUR. The software used in this work was in part developed by the DOE NNSA-ASC OASCR Flash Center at the University of Chicago. This work used the Extreme Science and Engineering discovery Environment (XSEDE), which is supported by National Science Foundation grant number ACI-1053575. Simulations at UMass Dartmouth were performed on a computer cluster supported by NSF grant CNS-0959382 and AFOSR DURIP grant FA9550-10-1-0354. RTF thanks the Institute for Theory and Computation at the Harvard-Smithsonian Center for Astrophysics, and the Kavli Institute for Theoretical Physics, supported in part by the national Science Foundation under grant NSF PHY11-25915, for visiting support during which this work was completed. This research has made use of resources from NASA’s Astrophysics Data System and the yt astrophysics analysis software suite (Turk et al. 2011)

    Spiral instability can drive thermonuclear explosions in binary white dwarf mergers

    Get PDF
    This is the final version of the article. Available from American Astronomical Society via the DOI in this record.Thermonuclear, or Type Ia supernovae (SNe Ia), originate from the explosion of carbon–oxygen white dwarfs, and serve as standardizable cosmological candles. However, despite their importance, the nature of the progenitor systems that give rise to SNe Ia has not been hitherto elucidated. Observational evidence favors the double-degenerate channel in which merging white dwarf binaries lead to SNe Ia. Furthermore, significant discrepancies exist between observations and theory, and to date, there has been no self-consistent merger model that yields a SNe Ia. Here we show that a spiral mode instability in the accretion disk formed during a binary white dwarf merger leads to a detonation on a dynamical timescale. This mechanism sheds light on how white dwarf mergers may frequently yield SNe Ia.We thank James Guillochon, Lars Bildsten, Matthew Wise, and Gunnar Martin Lellep for useful discussions and Matthias Aegenheyster for his contributions to the FLASH analysis codes. E.G.B. acknowledges support from MCINN grant AYA2011–23102, and from the European Union FEDER fund. The software used in this work was in part developed by the DOE NNSA-ASC OASCR Flash Center at the University of Chicago. This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant number ACI-1053575. Simulations at UMass Dartmouth were performed on a computer cluster supported by NSF grant CNS-0959382 and AFOSR DURIP grant FA9550-10-1-0354. This research has made use of NASA's Astrophysics Data System and the yt astrophysics analysis software suite Turk et al. (2011). R.T.F. is grateful to have had the opportunity to complete this paper during a visit to the Kavli Institute for Theoretical Physics, which is supported in part by the National Science Foundation under grant No. NSF PHY11-25915

    Experimental determination of the effective strong coupling constant

    Get PDF
    We present a first attempt to experimentally extract an effective strong coupling constant that we define to be a low Q2 extension of a previous definition by S. Brodsky et al. following an initial work of G. Grunberg. Using Jefferson Lab data and sum rules, we establish its Q2-behavior over the complete Q2-range. The result is compared to effective coupling constants inferred from different processes and to calculations based on Schwinger-Dyson equations, hadron spectroscopy or lattice QCD. Although the connection between the experimentally extracted effective coupling constants and the calculations is not established it is interesting to note that their behaviors are similar.Comment: Published in Physics Letters B 650 4 24

    Synchrotron x-ray study of lattice vibrations in CdCr2O4

    Full text link
    Using inelastic x-ray scattering we have investigated lattice vibrations in a geometric frustrated system CdCr2O4 that upon cooling undergoes a spin-Peierls phase transition at TN = 7.8 K from a cubic and paramagnetic to a tetragonal and Neel state. Phonon modes measured around Brillouin zone boundaries show energy shifts when the transition occurs. Our analysis shows that the shifting can be understood as the ordinary effects of the lowering of the crystal symmetry

    Visualising Virtual Observatory Data in Digital Planetaria

    Get PDF
    corecore