The efficacy of particle identification is compared using artificial neutral
networks and boosted decision trees. The comparison is performed in the context
of the MiniBooNE, an experiment at Fermilab searching for neutrino
oscillations. Based on studies of Monte Carlo samples of simulated data,
particle identification with boosting algorithms has better performance than
that with artificial neural networks for the MiniBooNE experiment. Although the
tests in this paper were for one experiment, it is expected that boosting
algorithms will find wide application in physics.Comment: 6 pages, 5 figures; Accepted for publication in Nucl. Inst. & Meth.