20 research outputs found

    Jackknife resampling technique on mocks: an alternative method for covariance matrix estimation

    Full text link
    We present a fast and robust alternative method to compute covariance matrix in case of cosmology studies. Our method is based on the jackknife resampling applied on simulation mock catalogues. Using a set of 600 BOSS DR11 mock catalogues as a reference, we find that the jackknife technique gives a similar galaxy clustering covariance matrix estimate by requiring a smaller number of mocks. A comparison of convergence rates show that ∌\sim7 times fewer simulations are needed to get a similar accuracy on variance. We expect this technique to be applied in any analysis where the number of available N-body simulations is low.Comment: 11 pages, 11 figures, 2 table

    TOI-2196 b: Rare planet in the hot Neptune desert transiting a G-type star

    Get PDF
    The hot Neptune desert is a region hosting a small number of short-period Neptunes in the radius-instellation diagram. Highly irradiated planets are usually either small (R â‰Č 2 R⊕) and rocky or they are gas giants with radii of ≳1 RJ. Here, we report on the intermediate-sized planet TOI-2196 b (TIC 372172128.01) on a 1.2 day orbit around a G-type star (V = 12.0, [Fe/H] = 0.14 dex) discovered by the Transiting Exoplanet Survey Satellite in sector 27. We collected 41 radial velocity measurements with the HARPS spectrograph to confirm the planetary nature of the transit signal and to determine the mass. The radius of TOI-2196 b is 3.51 ± 0.15 R⊕, which, combined with the mass of 26.0 ± 1.3 M⊕, results in a bulk density of 3.31−0.43+0.51 g cm−3. Hence, the radius implies that this planet is a sub-Neptune, although the density is twice than that of Neptune. A significant trend in the HARPS radial velocity measurements points to the presence of a distant companion with a lower limit on the period and mass of 220 days and 0.65 MJ, respectively, assuming zero eccentricity. The short period of planet b implies a high equilibrium temperature of 1860 ± 20 K, for zero albedo and isotropic emission. This places the planet in the hot Neptune desert, joining a group of very few planets in this parameter space discovered in recent years. These planets suggest that the hot Neptune desert may be divided in two parts for planets with equilibrium temperatures of ≳1800 K: a hot sub-Neptune desert devoid of planets with radii of ≈ 1.8−3 R⊕ and a sub-Jovian desert for radii of ≈5−12 R⊕. More planets in this parameter space are needed to further investigate this finding. Planetary interior structure models of TOI-2196 b are consistent with a H/He atmosphere mass fraction between 0.4% and 3%, with a mean value of 0.7% on top of a rocky interior. We estimated the amount of mass this planet might have lost at a young age and we find that while the mass loss could have been significant, the planet had not changed in terms of character: it was born as a small volatile-rich planet and it remains one at present

    TOI-733 b: A planet in the small-planet radius valley orbiting a Sun-like star

    Get PDF
    We report the discovery of a hot (Teq ≈ 1055 K) planet in the small-planet radius valley that transits the Sun-like star TOI-733. It was discovered as part of the KESPRINT follow-up program of TESS planets carried out with the HARPS spectrograph. TESS photometry from sectors 9 and 36 yields an orbital period of {equation presented} days and a radius of {equation presented}. Multi-dimensional Gaussian process modelling of the radial velocity measurements from HARPS and activity indicators gives a semi-amplitude of K = 2.23 ± 0.26 m s-1, translating into a planet mass of {equation presented}. These parameters imply that the planet is of moderate density ({equation presented}) and place it in the transition region between rocky and volatile-rich planets with H/He-dominated envelopes on the mass-radius diagram. Combining these with stellar parameters and abundances, we calculated planet interior and atmosphere models, which in turn suggest that TOI-733 b has a volatile-enriched, most likely secondary outer envelope, and may represent a highly irradiated ocean world. This is one of only a few such planets around G-type stars that are well characterised

    TOI-969: a late-K dwarf with a hot mini-Neptune in the desert and an eccentric cold Jupiter

    Get PDF
    Context. The current architecture of a given multi-planetary system is a key fingerprint of its past formation and dynamical evolution history. Long-term follow-up observations are key to complete their picture. Aims. In this paper, we focus on the confirmation and characterization of the components of the TOI-969 planetary system, where TESS detected a Neptune-size planet candidate in a very close-in orbit around a late K-dwarf star. Methods. We use a set of precise radial velocity observations from HARPS, PFS, and CORALIE instruments covering more than two years in combination with the TESS photometric light curve and other ground-based follow-up observations to confirm and characterize the components of this planetary system. Results. We find that TOI-969 b is a transiting close-in (Pb ∌ 1.82 days) mini-Neptune planet (Formula Presented), placing it on the lower boundary of the hot-Neptune desert (Teq,b = 941 \ub1 31 K). The analysis of its internal structure shows that TOI-969 b is a volatile-rich planet, suggesting it underwent an inward migration. The radial velocity model also favors the presence of a second massive body in the system, TOI-969 c, with a long period of (Formula Presented) days, a minimum mass of (Formula Presented), and a highly eccentric orbit of (Formula Presented). Conclusions. The TOI-969 planetary system is one of the few around K-dwarfs known to have this extended configuration going from a very close-in planet to a wide-separation gaseous giant. TOI-969 b has a transmission spectroscopy metric of 93 and orbits a moderately bright (G = 11.3 mag) star, making it an excellent target for atmospheric studies. The architecture of this planetary system can also provide valuable information about migration and formation of planetary systems

    TOI-733 b -- a planet in the small-planet radius valley orbiting a Sun-like star

    Get PDF
    We report the discovery of a hot (TeqT_{\rm eq} ≈\approx 1055 K) planet in the small planet radius valley transiting the Sun-like star TOI-733, as part of the KESPRINT follow-up program of TESS planets carried out with the HARPS spectrograph. TESS photometry from sectors 9 and 36 yields an orbital period of PorbP_{\rm orb} = 4.884765−2.4e−5+1.9e−54.884765 _{ - 2.4e-5 } ^ { + 1.9e-5 } days and a radius of RpR_{\mathrm{p}} = 1.992−0.090+0.0851.992 _{ - 0.090 } ^ { + 0.085 } R⊕R_{\oplus}. Multi-dimensional Gaussian process modelling of the radial velocity measurements from HARPS and activity indicators, gives a semi-amplitude of KK = 2.23±0.262.23 \pm 0.26 m s−1^{-1}, translating into a planet mass of MpM_{\mathrm{p}} = 5.72−0.68+0.705.72 _{ - 0.68 } ^ { + 0.70 } M⊕M_{\oplus}. These parameters imply that the planet is of moderate density (ρp\rho_\mathrm{p} = 3.98−0.66+0.773.98 _{ - 0.66 } ^ { + 0.77 } g cm−3^{-3}) and place it in the transition region between rocky and volatile-rich planets with H/He-dominated envelopes on the mass-radius diagram. Combining these with stellar parameters and abundances, we calculate planet interior and atmosphere models, which in turn suggest that TOI-733 b has a volatile-enriched, most likely secondary outer envelope, and may represent a highly irradiated ocean world - one of only a few such planets around G-type stars that are well-characterised.Comment: Accepted for publication in A&

    TOI-2196 b : Rare planet in the hot Neptune desert transiting a G-type star

    Get PDF
    Funding: C.M.P., M.F., I.G., and J.K. gratefully acknowledge the support of the Swedish National Space Agency (DNR 65/19, 174/18, 177/19, 2020-00104). L.M.S and D.G. gratefully acknowledge financial support from the CRT foundation under Grant No. 2018.2323 “Gaseous or rocky? Unveiling the nature of small worlds”. P.K. acknowledges support from grant LTT-20015. E.G. acknowledge the support of the ThĂŒringer Ministerium fĂŒr Wirtschaft, Wissenschaft und Digitale Gesellschaft. J.S.J. gratefully acknowledges support by FONDECYT grant 1201371 and from the ANID BASAL projects ACE210002 and FB210003. H.J.D. acknowledges support from the Spanish Research Agency of the Ministry of Science and Innovation (AEI-MICINN) under grant PID2019-107061GBC66, DOI: 10.13039/501100011033. D.D. acknowledges support from the TESS Guest Investigator Program grants 80NSSC21K0108 and 80NSSC22K0185. M.E. acknowledges the support of the DFG priority program SPP 1992 "Exploring the Diversity of Extrasolar Planets" (HA 3279/12-1). K.W.F.L. was supported by Deutsche Forschungsgemeinschaft grants RA714/14-1 within the DFG Schwerpunkt SPP 1992, Exploring the Diversity of Extrasolar Planets. N.N. acknowledges support from JSPS KAKENHI Grant Number JP18H05439, JST CREST Grant Number JPMJCR1761. M.S.I.P. is funded by NSF.The hot Neptune desert is a region hosting a small number of short-period Neptunes in the radius-instellation diagram. Highly irradiated planets are usually either small (R â‰Č 2 R⊕) and rocky or they are gas giants with radii of ≳1 RJ. Here, we report on the intermediate-sized planet TOI-2196 b (TIC 372172128.01) on a 1.2 day orbit around a G-type star (V = 12.0, [Fe/H] = 0.14 dex) discovered by the Transiting Exoplanet Survey Satellite in sector 27. We collected 41 radial velocity measurements with the HARPS spectrograph to confirm the planetary nature of the transit signal and to determine the mass. The radius of TOI-2196 b is 3.51 ± 0.15 R⊕, which, combined with the mass of 26.0 ± 1.3 M⊕, results in a bulk density of 3.31−0.43+0.51 g cm−3. Hence, the radius implies that this planet is a sub-Neptune, although the density is twice than that of Neptune. A significant trend in the HARPS radial velocity measurements points to the presence of a distant companion with a lower limit on the period and mass of 220 days and 0.65 MJ, respectively, assuming zero eccentricity. The short period of planet b implies a high equilibrium temperature of 1860 ± 20 K, for zero albedo and isotropic emission. This places the planet in the hot Neptune desert, joining a group of very few planets in this parameter space discovered in recent years. These planets suggest that the hot Neptune desert may be divided in two parts for planets with equilibrium temperatures of ≳1800 K: a hot sub-Neptune desert devoid of planets with radii of ≈ 1.8−3 R⊕ and a sub-Jovian desert for radii of ≈5−12 R⊕. More planets in this parameter space are needed to further investigate this finding. Planetary interior structure models of TOI-2196 b are consistent with a H/He atmosphere mass fraction between 0.4% and 3%, with a mean value of 0.7% on top of a rocky interior. We estimated the amount of mass this planet might have lost at a young age and we find that while the mass loss could have been significant, the planet had not changed in terms of character: it was born as a small volatile-rich planet and it remains one at present.Publisher PDFPeer reviewe

    The role of ice lines in the formation of Uranus and Neptune.

    No full text
    We aim at investigating whether the chemical composition of the outer region of the protosolar nebula can be consistent with current estimates of the elemental abundances in the ice giants. To do so, we use a self-consistent evolutionary disc and transport model to investigate the time and radial distributions of H2O, CO, CO2, CH3OH, CH4, N2&nbsp;and H2S, i.e. the main O-, C-, N and S-bearing volatiles in the outer disc. We show that it is impossible to accrete a mixture composed of gas and solids from the disc with a C/H ratio presenting enrichments comparable to the measurements (approx. 70 times protosolar). We also find that the C/N and C/S ratios measured in Uranus and Neptune are compatible with those acquired by building blocks agglomerated from solids condensed in the 10&ndash;20 AU region of the protosolar nebula. By contrast, the presence of protosolar C/N and C/S ratios in Uranus and Neptune would imply that their building blocks agglomerated from particles condensed at larger heliocentric distances. Our study outlines the importance of measuring the elemental abundances in the ice giant atmospheres, as they can be used to trace the planetary formation location, the origin of their building blocks and/or the chemical and physical conditions of the protosolar nebula.</p

    On the Stability of Low-mass Planets with Supercritical Hydrospheres

    No full text
    International audienceShort-period, low-mass water-rich planets are subject to strong irradiation from their host star, resulting in hydrospheres in a supercritical state. In this context, we explore the role of irradiation on small terrestrial planets that are moderately wet in the low-mass regime (0.2-1 M ⊕). We investigate their bulk properties for water content in the 0.01-5% range by making use of an internal structure model that is coupled to an atmosphere model. This coupling allows us to take into account both the compression of the interior due to the weight of the hydrosphere and the possibility of atmospheric instability in the low-mass regime. We show that, even for low masses and low water content, these planets display inflated atmospheres. For extremely low planetary masses and high irradiation temperatures, we find that steam atmospheres become gravitationally unstable when the ratio η of their scale height to planetary radius exceeds a critical value of ∌0.1. This result is supported by observational data, as all currently detected exoplanets exhibit values of η smaller than 0.013. Depending on their water content, our results show that highly irradiated, low-mass planets up to 0.9 M ⊕ with significative hydrospheres are not in a stable form and should lose their volatile envelope

    Tracing the Origins of the Ice Giants Through Noble Gas Isotopic Composition

    No full text
    International audienceThe current composition of giant planet atmospheres provides information on how such planets formed, and on the origin of the solid building blocks that contributed to their formation. Noble gas abundances and their isotope ratios are among the most valuable pieces of evidence for tracing the origin of the materials from which the giant planets formed. In this review we first outline the current state of knowledge for heavy element abundances in the giant planets and explain what is currently understood about the reservoirs of icy building blocks that could have contributed to the formation of the Ice Giants. We then outline how noble gas isotope ratios have provided details on the original sources of noble gases in various materials throughout the solar system. We follow this with a discussion on how noble gases are trapped in ice and rock that later became the building blocks for the giant planets and how the heavy element abundances could have been locally enriched in the protosolar nebula. We then provide a review of the current state of knowledge of noble gas abundances and isotope ratios in various solar system reservoirs, and discuss measurements needed to understand the origin of the ice giants. Finally, we outline how formation and interior evolution will influence the noble gas abundances and isotope ratios observed in the ice giants today. Measurements that a future atmospheric probe will need to make include (1) the 3He/4He isotope ratio to help constrain the protosolar D/H and 3He/4He; (2) the 20Ne/22Ne and 21Ne/22Ne to separate primordial noble gas reservoirs similar to the approach used in studying meteorites; (3) the Kr/Ar and Xe/Ar to determine if the building blocks were Jupiter-like or similar to 67P/C-G and Chondrites; (4) the krypton isotope ratios for the first giant planet observations of these isotopes; and (5) the xenon isotopes for comparison with the wide range of values represented by solar system reservoirs
    corecore