501 research outputs found

    Genome-wide metabolic re-annotation of Ashbya gossypii: new insights into its metabolism through a comparative analysis with Saccharomyces cerevisiae and Kluyveromyces lactis

    Get PDF
    BACKGROUND:Ashbya gossypii is an industrially relevant microorganism traditionally used for riboflavin production. Despite the high gene homology and gene order conservation comparatively with Saccharomyces cerevisiae, it presents a lower level of genomic complexity. Its type of growth, placing it among filamentous fungi, questions how close it really is from the budding yeast, namely in terms of metabolism, therefore raising the need for an extensive and thorough study of its entire metabolism. This work reports the first manual enzymatic genome-wide re-annotation of A. gossypii as well as the first annotation of membrane transport proteins.RESULTS:After applying a developed enzymatic re-annotation pipeline, 847 genes were assigned with metabolic functions. Comparatively to KEGG's annotation, these data corrected the function for 14% of the common genes and increased the information for 52 genes, either completing existing partial EC numbers or adding new ones. Furthermore, 22 unreported enzymatic functions were found, corresponding to a significant increase in the knowledge of the metabolism of this organism. The information retrieved from the metabolic re-annotation and transport annotation was used for a comprehensive analysis of A. gossypii's metabolism in comparison to the one of S. cerevisiae (post-WGD - whole genome duplication) and Kluyveromyces lactis (pre-WGD), suggesting some relevant differences in several parts of their metabolism, with the majority being found for the metabolism of purines, pyrimidines, nitrogen and lipids. A considerable number of enzymes were found exclusively in A. gossypii comparatively with K. lactis (90) and S. cerevisiae (13). In a similar way, 176 and 123 enzymatic functions were absent on A. gossypii comparatively to K. lactis and S. cerevisiae, respectively, confirming some of the well-known phenotypes of this organism.CONCLUSIONS:This high quality metabolic re-annotation, together with the first membrane transporters annotation and the metabolic comparative analysis, represents a new important tool for the study and better understanding of A. gossypii's metabolism.Research described in this article was financially supported by FEDER and "Fundacao para a Ciencia e a Tecnologia" (FCT): Project AshByofactory (PTDC/EBB-EBI/101985/2008 - FCOMP-01-0124-FEDER-009701), Strategic Project PEst-OE/EQB/LA0023/2013, Project "BioInd - Biotechnology and Bioengineering for improved Industrial and Agro-Food processes, REF.NORTE-07-0124-FEDER-000028" Co-funded by the Programa Operacional Regional do Norte (ON.2 - O Novo Norte), QREN, FEDER and the PhD grant to DG (SFRH/BD/88623/2012)

    Characterization of Fuji Apples from Different Harvest Dates and Storage Conditions from Measurements of Volatiles by Gas Chromatography and Electronic Nose

    Full text link
    Volatile compounds in Fuji apples harvested at two different maturities were measured at harvest and after 5 and 7 months of cold storage (1 °C) in four different atmospheres. When the samples were characterized by both chromatographic measurements of volatiles and responses of an electronic nose, the analyses showed a clear separation between fruits from different storage conditions (a normal cold atmosphere and three controlled atmospheres). During poststorage, the apples were left to ripen for 1, 5, and 10 days at 20 °C before analytical measurements were done involving headspace-gas chromatography methods and electronic nose type quartz crystal microbalances. Electronic nose responses registered by seven different sensors were used to classify the apples using principal component analysis. It was possible to identify the samples from different storage periods, days of shelf life, and harvest dates, but it was not possible to differentiate the fruits corresponding to different cold storage atmospheres

    Retinoblastoma seeds: Impact on American Joint Committee on Cancer clinical staging

    Get PDF
    Aim To investigate whether the American Joint Committee on Cancer (AJCC) clinical category cT2b needs to be subclassified by the type and distribution of retinoblastoma (RB) seeding. Methods Multicentre, international registry-based data were collected from RB centres enrolled between January 2001 and December 2013. 1054 RB eyes with vitreous or subretinal seeds from 18 ophthalmic oncology centres, in 13 countries within six continents were analysed. Local treatment failure was defined as the use of secondary enucleation or external beam radiation therapy (EBRT) and was estimated with the Kaplan-Meier method. Results Clinical category cT2b included 1054 eyes. Median age at presentation was 16.0 months. Of these, 428 (40.6%) eyes were salvaged, and 430 (40.8%) were treated with primary and 196 (18.6%) with secondary enucleation. Of the 592 eyes that had complete data for globe salvage analysis, the distribution of seeds was focal in 143 (24.2%) and diffuse in 449 (75.8%). The 5-year Kaplan-Meier cumulative globe-salvage (without EBRT) was 78% and 49% for eyes with focal and diffuse RB seeding, respectively. Cox proportional hazards regression analysis confirmed a higher local treatment failure risk with diffuse seeds as compared with focal seeds (hazard rate: 2.8; p<0.001). There was insufficient evidence to prove or disprove an association between vitreous seed type and local treatment failure risk(p=0.06). Conclusion This international, multicentre, registry-based analysis of RB eyes affirmed that eyes with diffuse intraocular distribution of RB seeds at diagnosis had a higher risk of local treatment failure when compared with focal seeds. Subclassification of AJCC RB category cT2b into focal vs diffuse seeds will improve prognostication for eye salvage.Fil: Tomar, Ankit Singh. New York Eye Cancer Center; Estados UnidosFil: Finger, Paul T.. New York Eye Cancer Center; Estados UnidosFil: Gallie, Brenda. University Of Toronto. Hospital For Sick Children; CanadáFil: Kivelä, Tero. University of Helsinki; Finlandia. Helsinki University Hospital; FinlandiaFil: Mallipatna, Ashwin. University Of Toronto. Hospital For Sick Children; Canadá. Narayana Nethralaya; IndiaFil: Zhang, Chengyue. Beijing Children's Hospital; ChinaFil: Zhao, Junyang. Beijing Children's Hospital; ChinaFil: Wilson, Matthew. University of Tennessee; Estados UnidosFil: Brennan, Rachel. St Jude Children's Research Hospital; Estados UnidosFil: Burges, Michala. University of Tennessee; Estados UnidosFil: Kim, Jonathan. Keck Medical School of the University of Southern California; Estados UnidosFil: Berry, Jesse L.. Children's Hospital Los Angeles; Estados UnidosFil: Jubran, Rima. Childrens Hospital Society of Los Angeles; Estados UnidosFil: Khetan, Vikas. Vitreo Retinal Services; IndiaFil: Ganeshan, Suganeswari. Vitreo Retinal Services; IndiaFil: Yarovoy, Andrey. Fyodorov Eye Microsurgery Federal State Institution; RusiaFil: Yarovaya, Vera. Fyodorov Eye Microsurgery Federal State Institution; RusiaFil: Kotova, Elena. Fyodorov Eye Microsurgery Federal State Institution; RusiaFil: Volodin, Denis. Fyodorov Eye Microsurgery Federal State Institution; RusiaFil: Yousef, Yacoub. King Hussein Cancer Center; JordaniaFil: Nummi, Kalle. University of Helsinki; Finlandia. Helsinki University Hospital; FinlandiaFil: Ushakova, Tatiana L.. N.N. Blokhin Russian Cancer Research Center; Rusia. Russian Academy of Postgraduate Medical Education; RusiaFil: Yugay, Olga V.. N.N. Blokhin Russian Cancer Research Center; RusiaFil: Polyakov, Vladimir G. N.N. Blokhin Russian Cancer Research Center; Rusia. Russian Academy of Sciences; RusiaFil: Ramirez Ortiz, Marco Antonio. Hospital Infantil de Mexico Federico Gomez; MéxicoFil: Esparza Aguiar, Elizabeth. Hospital Infantil de Mexico Federico Gomez; MéxicoFil: Chantada, Guillermo Luis. Gobierno de la Ciudad de Buenos Aires. Hospital de Pediatría "Juan P. Garrahan"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Schaiquevich, Paula Susana. Gobierno de la Ciudad de Buenos Aires. Hospital de Pediatría "Juan P. Garrahan"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Fandiño, Adriana Cristina. Gobierno de la Ciudad de Buenos Aires. Hospital de Pediatría "Juan P. Garrahan"; ArgentinaFil: Yam, Jason C.. The Chinese University of Hong Kong Faculty of Medicine; Hong Kon

    Alfabetização baseada na ciência: manual do curso ABC

    Get PDF
    O presente manual faz parte do projeto ABC – Alfabetização Baseada na Ciência, fruto de um Acordo de Cooperação Internacional celebrado entre a Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), a Faculdade de Psicologia e de Ciências da Educação da Universidade do Porto (FPCEUP), o Instituto Politécnico do Porto (IPP) e a Universidade Aberta de Portugal (UAb). Essa importante parceria tem o objetivo de contribuir para a formação continuada dos profissionais da educação brasileiros que atuam na área de alfabetização, somando-se aos vários esforços que têm sido envidados pelo Ministério da Educação (MEC) para elevar a qualidade dos processos de alfabetização no Brasil e, consequentemente, os seus resultados. A formação de professores tem sido um dos pilares da Política Nacional de Alfabetização (PNA), instituída pelo MEC por meio do Decreto 9.765/19, a qual destaca entre seus princípios a fundamentação de programas e ações em evidências provenientes das ciências cognitivas, bem como a adoção de referenciais de políticas públicas exitosas, nacionais e estrangeiras, baseadas em evidências científicas.info:eu-repo/semantics/publishedVersio

    Pervasive gaps in Amazonian ecological research

    Get PDF

    Les droits disciplinaires des fonctions publiques : « unification », « harmonisation » ou « distanciation ». A propos de la loi du 26 avril 2016 relative à la déontologie et aux droits et obligations des fonctionnaires

    Get PDF
    The production of tt‾ , W+bb‾ and W+cc‾ is studied in the forward region of proton–proton collisions collected at a centre-of-mass energy of 8 TeV by the LHCb experiment, corresponding to an integrated luminosity of 1.98±0.02 fb−1 . The W bosons are reconstructed in the decays W→ℓν , where ℓ denotes muon or electron, while the b and c quarks are reconstructed as jets. All measured cross-sections are in agreement with next-to-leading-order Standard Model predictions.The production of ttt\overline{t}, W+bbW+b\overline{b} and W+ccW+c\overline{c} is studied in the forward region of proton-proton collisions collected at a centre-of-mass energy of 8 TeV by the LHCb experiment, corresponding to an integrated luminosity of 1.98 ±\pm 0.02 \mbox{fb}^{-1}. The WW bosons are reconstructed in the decays WνW\rightarrow\ell\nu, where \ell denotes muon or electron, while the bb and cc quarks are reconstructed as jets. All measured cross-sections are in agreement with next-to-leading-order Standard Model predictions

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost
    corecore