388 research outputs found

    The receptor-like kinase ERECTA contributes to the shade-avoidance syndrome in a background-dependent manner

    Get PDF
    Background and Aims Plants growing at high densities perceive a decrease in the red to far-red (R/FR) ratio of incoming light. These changes in light quality trigger a suite of responses collectively known as the shade-avoidance syndrome (SAS) including hypocotyl and stem elongation, inhibition of branching and acceleration of flowering. Methods Quantitative trait loci (QTLs) were mapped for hypocotyl length to end-of-day far-red (EOD), a simulated shade-avoidance response, in recombinant inbred line (RIL) populations of Arabidopsis thaliana seedlings, derived from Landsberg erecta (Ler) and three accessions (Columbia, Col; Nossen, No-0; and Cape Verde Islands, Cvi-0). Key Results Five loci were identified as being responsible for the EOD response, with a positive contribution of Ler alleles on the phenotype independently of the RIL population. Quantitative complementation analysis and transgenic lines showed that PHYB is the candidate gene for EODRATIO5 in the Ler × Cvi-0 RIL population, but not for two co-localized QTLs, EODRATIO1 and EODRATIO2 mapped in the Ler × No-0 and Ler × Col RIL populations, respectively. The ERECTA gene was also implicated in the SAS in a background-dependent manner. For hypocotyl length EOD response, a positive contribution of erecta alleles was found in Col and Van-0, but not in Ler, Cvi-0, Hir-1 or Ws. Furthermore, pleiotropic effects of ERECTA in the EOD response were also detected for petiole and lamina elongation, hyponastic growth, and flowering time. Conclusions The results show that the analysis of multiple mapping populations leads to a better understanding of the SAS genetic architecture. Moreover, the background- and trait-dependent contribution of ERECTA in the SAS suggest that its function in shaded natural environments may be relevant for some populations in different phases of plant development. It is proposed that ERECTA is involved in canalization processes buffering the genetic variation of the SAS against environmental light fluctuations.Fil: Kasulin, Luciana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas A la Agricultura; ArgentinaFil: Agrofoglio, Yamila Carla. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas A la Agricultura; ArgentinaFil: Botto, Javier Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas A la Agricultura; Argentin

    [(2R,3S,5R)-3-Acet­oxy-5-(5-formyl-2,4-dioxo-1,2,3,4-tetra­hydro­pyrimidin-1-yl)-2,3,4,5-tetra­hydro­furan-2-yl]methyl acetate

    Get PDF
    In the two independent but very similar mol­ecules (A and B) of the title compound, C14H16N2O8, both six-membered pyrimidine rings are nearly planar [maximum deviations = 0.010 (3) Å in A and 0.028 (3) Å in B]. The five-membered furan­ose ring in mol­ecule A adopts an envelope conformation, while the same ring in mol­ecule B has a twisted conformation. In the crystal, the A mol­ecules are linked via a pair of inter­molecular N—H⋯O hydrogen bonds, forming dimers. Each A mol­ecule is further linked to a B mol­ecule via a second N—H⋯O hydrogen bond. There are also a number of C—H⋯·O inter­actions present, leading to the formation of a three-dimensional network

    First complete genome sequence of potato leafroll virus from Argentina

    Get PDF
    In this study, we determined for the first time the complete genomic sequence of an Argentinian isolate of Potato leafroll virus (PLRV), the type species of the genus Polerovirus. The isolate sequenced came from a Solanum tuberosum plant that had been naturally infected with the virus. Isolate PLRV-AR had a nucleotide sequence identity between 94.4 and 97.3% with several known PLRV isolates worldwide.Inst. de BiotecnologíaFil: Barrios Baron, Maria Pilar. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Biotecnología; ArgentinaFil: Agrofoglio, Yamila Carla. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Biotecnología; ArgentinaFil: Delfosse, Veronica Cecilia. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Biotecnología; Argentina. Universidad Nacional de San Martín; ArgentinaFil: Nahirñak, Vanesa. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Biotecnología; ArgentinaFil: Gonzalez De Urreta, Martin Salvador. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Biotecnología; ArgentinaFil: Almasia, Natalia Ines. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Biotecnología; ArgentinaFil: Vazquez Rovere, Cecilia. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Biotecnología; ArgentinaFil: Sabio Y Garcia, Julia Verónica. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Biotecnología; Argentin

    Breakthroughs in Medicinal Chemistry: New targets and mechanisms, new drugs, new hopes

    Get PDF
    The Editorial Board of the Medicinal Chemistry section of the journal Molecules publishes here its first Editorial, which has been prepared by highlighting, in sub-editorials of about one hundred words, some selected recently published articles that may have a profound impact on drug discovery and therapy. In particular, this editorial highlights new drug targets and mechanisms of action and new classes of drugs, as well as new therapeutic uses for known drugs or the involvement of known biological targets in new diseases. We also discuss some structural biology studies and new computational tools that may pave the way for the rational design or identification of more efficacious and safer drugs. Overall, the findings reported in these highlighted papers raise our hopes for the management of difficult-to-treat diseases that are posing a growing health threat, with new or repurposed drugs that overcome the limitations of currently applied therapies

    Circadian and chemotherapy-related changes in urinary modified nucleosides excretion in patients with metastatic colorectal cancer

    Get PDF
    Urinary levels of modified nucleosides reflect nucleic acids turnover and can serve as non-invasive biomarkers for monitoring tumour circadian dynamics, and treatment responses in patients with metastatic colorectal cancer. In 39 patients, median overnight urinary excretion of LC-HRMS determinations of pseudouridine, was ~ tenfold as large as those of 1-methylguanosine, 1-methyladenosine, or 4-acetylcytidine, and ~ 100-fold as large as those of adenosine and cytidine. An increase in any nucleoside excretion after chemotherapy anticipated plasma carcinoembryonic antigen progression 1–2 months later and was associated with poor survival. Ten fractionated urines were collected over 2-days in 29 patients. The median value of the rhythm-adjusted mean of urinary nucleoside excretion varied from 64.3 for pseudouridine down to 0.61 for cytidine. The rhythm amplitudes relative to the 24-h mean of 6 nucleoside excretions were associated with rest duration, supporting a tight link between nucleosides turnover and the rest-activity rhythm. Moreover, the amplitude of the 1-methylguanosine rhythm was correlated with the rest-activity dichotomy index, a significant predictor of survival outcome in prior studies. In conclusion, urinary excretion dynamics of modified nucleosides appeared useful for the characterization of the circadian control of cellular proliferation and for tracking early responses to treatments in colorectal cancer patients

    Breakthroughs in Medicinal Chemistry: New Targets and Mechanisms, New Drugs, New Hopes–4

    Get PDF
    Breakthroughs in Medicinal Chemistry: New Targets and Mechanisms, New Drugs, New Hopes is a series of Editorials, which is published on a biannual basis by the Editorial Board of the Medicinal Chemistry section of the journal Molecules. In these Editorials, we highlight in brief reports (of about one hundred words) a number of recently published articles that describe crucial findings, such as the discovery of novel drug targets and mechanisms of action, or novel classes of drugs, which may inspire future medicinal chemistry endeavours devoted to addressing prime unmet medical needs
    corecore