4,114 research outputs found

    Impossible shadows and lightness constancy

    Get PDF
    The intersection between an illumination and a reflectance edge is characterised by the `ratio-invariant' property, that is the luminance ratio of the regions under different illumination remains the same. In a CRT experiment, we shaped two areas, one surrounding the other, and simulated an illumination edge dividing them in two frames of illumination. The portion of the illumina- tion edge standing on the surrounding area (labelled contextual background) was the contextual edge, while the portion standing on the enclosed area (labelled mediating background) was the mediating edge. On the mediating background, there were two patches, one per illumination frame. Observers were asked to adjust the luminance of the patch in bright illumination to equate the lightness of the other. We compared conditions in which the luminance ratio at the contextual edge could be (i) equal (possible shadow), or (ii) larger (impossible shadow) than that at the mediating edge. In addition, we manipulated the reflectance of the backgrounds. It could be higher for the contextual than for the mediating background; or, vice versa, lower for the contextual than for the mediating background. Results reveal that lightness constancy significantly increases when: (i) the luminance ratio at the contextual edge is larger than that at the mediating edge creating an impossible shadow, and (ii) the reflectance of the contextual background is lower than that of the mediating one. We interpret our results according to the albedo hypothesis, and suggest that the scission process is facilitated when the luminance ratio at the contextual edge is larger than that at the mediating edge and/or the reflectance of the including area is lower than that of the included one. This occurs even if the ratio-invariant property is violated

    About the parabolic relation existing between the skewness and the kurtosis in time series of experimental data

    Full text link
    In this work we investigate the origin of the parabolic relation between skewness and kurtosis often encountered in the analysis of experimental time-series. We argue that the numerical values of the coefficients of the curve may provide informations about the specific physics of the system studied, whereas the analytical curve per se is a fairly general consequence of a few constraints expected to hold for most systems.Comment: To appear in Physica Script

    TL1A/DR3 axis involvement in the inflammatory cytokine network during pulmonary sarcoidosis

    Get PDF
    BACKGROUND: TNF-like ligand 1A (TL1A), a recently recognized member of the TNF superfamily, and its death domain receptor 3 (DR3), firstly identified for their relevant role in T lymphocyte homeostasis, are now well-known mediators of several immune-inflammatory diseases, ranging from rheumatoid arthritis to inflammatory bowel diseases to psoriasis, whereas no data are available on their involvement in sarcoidosis, a multisystemic granulomatous disease where a deregulated T helper (Th)1/Th17 response takes place. METHODS: In this study, by flow cytometry, real-time PCR, confocal microscopy and immunohistochemistry analyses, TL1A and DR3 were investigated in the pulmonary cells and the peripheral blood of 43 patients affected by sarcoidosis in different phases of the disease (29 patients with active sarcoidosis, 14 with the inactive form) and in 8 control subjects. RESULTS: Our results demonstrated a significant higher expression, both at protein and mRNA levels, of TL1A and DR3 in pulmonary T cells and alveolar macrophages of patients with active sarcoidosis as compared to patients with the inactive form of the disease and to controls. In patients with sarcoidosis TL1A was strongly more expressed in the lung than the blood, i.e., at the site of the involved organ. Additionally, zymography assays showed that TL1A is able to increase the production of matrix metalloproteinase 9 by sarcoid alveolar macrophages characterized, in patients with the active form of the disease, by reduced mRNA levels of the tissue inhibitor of metalloproteinase (TIMP)-1. CONCLUSIONS: These data suggest that TL1A/DR3 interactions are part of the extended and complex immune-inflammatory network that characterizes sarcoidosis during its active phase and may contribute to the pathogenesis and to the progression of the disease

    Attosecond pulse shaping around a Cooper minimum

    Full text link
    High harmonic generation (HHG) is used to measure the spectral phase of the recombination dipole matrix element (RDM) in argon over a broad frequency range that includes the 3p Cooper minimum (CM). The measured RDM phase agrees well with predictions based on the scattering phases and amplitudes of the interfering s- and d-channel contributions to the complementary photoionization process. The reconstructed attosecond bursts that underlie the HHG process show that the derivative of the RDM spectral phase, the group delay, does not have a straight-forward interpretation as an emission time, in contrast to the usual attochirp group delay. Instead, the rapid RDM phase variation caused by the CM reshapes the attosecond bursts.Comment: 5 pages, 5 figure

    The Theories of Turbulence

    Get PDF
    The theory of turbulence reached its full growth at the end of the 19th century as a result of the work by Boussinesq and Reynolds. It then underwent a long period of stagnation which ended under the impulse given to it by the development of wind tunnels caused by the needs of aviation. Numerous researchers, attempted to put Reynolds' elementary statistical theory into a more precise form. During the war, some isolated scientists - von Weizsacker and Heisenberg in Germany, Kolmogoroff in Russia, Onsager in the U.S.A. - started a program of research. By a system of assumptions which make it possible to approach the structure of turbulence in well-defined limiting conditions quantitatively, they obtained a certain number of laws on the correlations and the spectrum. Since the late reports have improved the mathematical language of turbulence, it was deemed advisable to start with a detailed account of the mathematical methods applicable to turbulence, inspired at first by the work of the French school, above all for the basic principles, then the work of the foreigners, above all for the theory of the spectrum

    Quantum superposition principle and generation of ultrashort optical pulses

    Full text link
    We discuss the propagation of laser radiation through a medium of quantum prepared {\Lambda}-type atoms in order to enhance the insight into the physics of QS-PT generator suggested in Phys. Rev. A 80, 035801 (2009). We obtain analytical results which give a qualitatively corerct description of the outcoming series of ultrashort optical pulses and show that for the case of alkali vapor medium QS-PT generation may be implemented under ordinary experimental conditions

    kappa-Minkowski representations on Hilbert spaces

    Full text link
    The algebra of functions on kappa-Minkowski noncommutative spacetime is studied as algebra of operators on Hilbert spaces. The representations of this algebra are constructed and classified. This new approach leads to a natural construction of integration in kappa-Minkowski spacetime in terms of the usual trace of operators.Comment: 23 pag. Latex, correction of a couple of typos, reference added, title slightly change

    The nonrelativistic limit of the Magueijo-Smolin model of deformed special relativity

    Full text link
    We study the nonrelativistic limit of the motion of a classical particle in a model of deformed special relativity and of the corresponding generalized Klein-Gordon and Dirac equations, and show that they reproduce nonrelativistic classical and quantum mechanics, respectively, although the rest mass of a particle no longer coincides with its inertial mass. This fact clarifies the meaning of the different definitions of velocity of a particle available in DSR literature. Moreover, the rest mass of particles and antiparticles differ, breaking the CPT invariance. This effect is close to observational limits and future experiments may give indications on its effective existence.Comment: 10 pages, plain TeX. Discussion of generalized Dirac equation and CPT violation adde

    The MGDO software library for data analysis in Ge neutrinoless double-beta decay experiments

    Full text link
    The GERDA and Majorana experiments will search for neutrinoless double-beta decay of germanium-76 using isotopically enriched high-purity germanium detectors. Although the experiments differ in conceptual design, they share many aspects in common, and in particular will employ similar data analysis techniques. The collaborations are jointly developing a C++ software library, MGDO, which contains a set of data objects and interfaces to encapsulate, store and manage physical quantities of interest, such as waveforms and high-purity germanium detector geometries. These data objects define a common format for persistent data, whether it is generated by Monte Carlo simulations or an experimental apparatus, to reduce code duplication and to ease the exchange of information between detector systems. MGDO also includes general-purpose analysis tools that can be used for the processing of measured or simulated digital signals. The MGDO design is based on the Object-Oriented programming paradigm and is very flexible, allowing for easy extension and customization of the components. The tools provided by the MGDO libraries are used by both GERDA and Majorana.Comment: 4 pages, 1 figure, proceedings for TAUP201

    Replica symmetry breaking in mean field spin glasses trough Hamilton-Jacobi technique

    Full text link
    During the last years, through the combined effort of the insight, coming from physical intuition and computer simulation, and the exploitation of rigorous mathematical methods, the main features of the mean field Sherrington-Kirkpatrick spin glass model have been firmly established. In particular, it has been possible to prove the existence and uniqueness of the infinite volume limit for the free energy, and its Parisi expression, in terms of a variational principle, involving a functional order parameter. Even the expected property of ultrametricity, for the infinite volume states, seems to be near to a complete proof. The main structural feature of this model, and related models, is the deep phenomenon of spontaneous replica symmetry breaking (RSB), discovered by Parisi many years ago. By expanding on our previous work, the aim of this paper is to investigate a general frame, where replica symmetry breaking is embedded in a kind of mechanical scheme of the Hamilton-Jacobi type. Here, the analog of the "time" variable is a parameter characterizing the strength of the interaction, while the "space" variables rule out quantitatively the broken replica symmetry pattern. Starting from the simple cases, where annealing is assumed, or replica symmetry, we build up a progression of dynamical systems, with an increasing number of space variables, which allow to weaken the effect of the potential in the Hamilton-Jacobi equation, as the level of symmetry braking is increased. This new machinery allows to work out mechanically the general K-step RSB solutions, in a different interpretation with respect to the replica trick, and lightens easily their properties as existence or uniqueness.Comment: 24 pages, no figure
    • …
    corecore