1,571 research outputs found

    Iterative in Situ Click Chemistry Assembles a Branched Capture Agent and Allosteric Inhibitor for Akt1

    Get PDF
    We describe the use of iterative in situ click chemistry to design an Akt-specific branched peptide triligand that is a drop-in replacement for monoclonal antibodies in multiple biochemical assays. Each peptide module in the branched structure makes unique contributions to affinity and/or specificity resulting in a 200 nM affinity ligand that efficiently immunoprecipitates Akt from cancer cell lysates and labels Akt in fixed cells. Our use of a small molecule to preinhibit Akt prior to screening resulted in low micromolar inhibitory potency and an allosteric mode of inhibition, which is evidenced through a series of competitive enzyme kinetic assays. To demonstrate the efficiency and selectivity of the protein-templated in situ click reaction, we developed a novel QPCR-based methodology that enabled a quantitative assessment of its yield. These results point to the potential for iterative in situ click chemistry to generate potent, synthetically accessible antibody replacements with novel inhibitory properties

    Atomic-scale modeling of the deformation of nanocrystalline metals

    Get PDF
    Nanocrystalline metals, i.e. metals with grain sizes from 5 to 50 nm, display technologically interesting properties, such as dramatically increased hardness, increasing with decreasing grain size. Due to the small grain size, direct atomic-scale simulations of plastic deformation of these materials are possible, as such a polycrystalline system can be modeled with the computational resources available today. We present molecular dynamics simulations of nanocrystalline copper with grain sizes up to 13 nm. Two different deformation mechanisms are active, one is deformation through the motion of dislocations, the other is sliding in the grain boundaries. At the grain sizes studied here the latter dominates, leading to a softening as the grain size is reduced. This implies that there is an ``optimal'' grain size, where the hardness is maximal. Since the grain boundaries participate actively in the deformation, it is interesting to study the effects of introducing impurity atoms in the grain boundaries. We study how silver atoms in the grain boundaries influence the mechanical properties of nanocrystalline copper.Comment: 10 pages, LaTeX2e, PS figures and sty files included. To appear in Mater. Res. Soc. Symp. Proc. vol 538 (invited paper). For related papers, see http://www.fysik.dtu.dk/~schiotz/publist.htm

    Iterative in situ click chemistry creates antibody-like protein-capture agents

    Get PDF
    Iterative in situ click chemistry (see scheme for the tertiary ligand screen) and the one-bead-one-compound method for the creation of a peptide library enable the fragment-based assembly of selective high-affinity protein-capture agents. The resulting ligands are water-soluble and stable chemically, biochemically, and thermally. They can be produced in gram quantities through copper (I)-catalyzed cycloaddition

    Homothetic perfect fluid space-times

    Get PDF
    A brief summary of results on homotheties in General Relativity is given, including general information about space-times admitting an r-parameter group of homothetic transformations for r>2, as well as some specific results on perfect fluids. Attention is then focussed on inhomogeneous models, in particular on those with a homothetic group H4H_4 (acting multiply transitively) and H3H_3. A classification of all possible Lie algebra structures along with (local) coordinate expressions for the metric and homothetic vectors is then provided (irrespectively of the matter content), and some new perfect fluid solutions are given and briefly discussed.Comment: 27 pages, Latex file, Submitted to Class. Quantum Gra

    Top quark physics in hadron collisions

    Full text link
    The top quark is the heaviest elementary particle observed to date. Its large mass makes the top quark an ideal laboratory to test predictions of perturbation theory concerning heavy quark production at hadron colliders. The top quark is also a powerful probe for new phenomena beyond the Standard Model of particle physics. In addition, the top quark mass is a crucial parameter for scrutinizing the Standard Model in electroweak precision tests and for predicting the mass of the yet unobserved Higgs boson. Ten years after the discovery of the top quark at the Fermilab Tevatron top quark physics has entered an era where detailed measurements of top quark properties are undertaken. In this review article an introduction to the phenomenology of top quark production in hadron collisions is given, the lessons learned in Tevatron Run I are summarized, and first Run II results are discussed. A brief outlook to the possibilities of top quark research a the Large Hadron Collider, currently under construction at CERN, is included.Comment: 84 pages, 32 figures, accepted for publication by Reports on Progress in Physic

    Cryptosporidium Priming Is More Effective than Vaccine for Protection against Cryptosporidiosis in a Murine Protein Malnutrition Model

    Get PDF
    Cryptosporidium is a major cause of severe diarrhea, especially in malnourished children. Using a murine model of C. parvum oocyst challenge that recapitulates clinical features of severe cryptosporidiosis during malnutrition, we interrogated the effect of protein malnutrition (PM) on primary and secondary responses to C. parvum challenge, and tested the differential ability of mucosal priming strategies to overcome the PM-induced susceptibility. We determined that while PM fundamentally alters systemic and mucosal primary immune responses to Cryptosporidium, priming with C. parvum (106 oocysts) provides robust protective immunity against re-challenge despite ongoing PM. C. parvum priming restores mucosal Th1-type effectors (CD3+CD8+CD103+ T-cells) and cytokines (IFNγ, and IL12p40) that otherwise decrease with ongoing PM. Vaccination strategies with Cryptosporidium antigens expressed in the S. Typhi vector 908htr, however, do not enhance Th1-type responses to C. parvum challenge during PM, even though vaccination strongly boosts immunity in challenged fully nourished hosts. Remote non-specific exposures to the attenuated S. Typhi vector alone or the TLR9 agonist CpG ODN-1668 can partially attenuate C. parvum severity during PM, but neither as effectively as viable C. parvum priming. We conclude that although PM interferes with basal and vaccine-boosted immune responses to C. parvum, sustained reductions in disease severity are possible through mucosal activators of host defenses, and specifically C. parvum priming can elicit impressively robust Th1-type protective immunity despite ongoing protein malnutrition. These findings add insight into potential correlates of Cryptosporidium immunity and future vaccine strategies in malnourished children

    Cellular and humoral immune responses and protection against schistosomes induced by a radiation-attenuated vaccine in chimpanzees

    Get PDF
    The radiation-attenuated Schistosoma mansoni vaccine is highly effective in rodents and primates but has never been tested in humans, primarily for safety reasons. To strengthen its status as a paradigm for a human recombinant antigen vaccine, we have undertaken a small-scale vaccination and challenge experiment in chimpanzees (Pan troglodytes). Immunological, clinical, and parasitological parameters were measured in three animals after multiple vaccinations, together with three controls, during the acute and chronic stages of challenge infection up to chemotherapeutic cure. Vaccination induced a strong in vitro proliferative response and early gamma interferon production, but type 2 cytokines were dominant by the time of challenge. The controls showed little response to challenge infection before the acute stage of the disease, initiated by egg deposition. In contrast, the responses of vaccinated animals were muted throughout the challenge period. Vaccination also induced parasite-specific immunoglobulin M (IgM) and IgG, which reached high levels at the time of challenge, while in control animals levels did not rise markedly before egg deposition. The protective effects of vaccination were manifested as an amelioration of acute disease and overall morbidity, revealed by differences in gamma-glutamyl transferase level, leukocytosis, eosinophilia, and hematocrit. Moreover, vaccinated chimpanzees had a 46% lower level of circulating cathodic antigen and a 38% reduction in fecal egg output, compared to controls, during the chronic phase of infection

    Low-Energy Linear Structures in Dense Oxygen: Implications for the ϵ\epsilon-phase

    Full text link
    Using density functional theory implemented within the generalized gradient approximation, a new non-magnetic insulating ground state of solid oxygen is proposed and found to be energetically favored at pressures corresponding to the ϵ\epsilon-phase. The newly-predicted ground state is composed of linear herringbone-type chains of O2_2 molecules and has {\it Cmcm} symmetry (with an alternative monoclinic cell). Importantly, this phase supports IR-active zone-center phonons, and their computed frequencies are found to be in broad agreement with recent infrared absorption experiments.Comment: 4 pages, 4 figure

    Journal Staff

    Get PDF
    We present the first measurements of the differential cross section d sigma/dp(T)(gamma) for the production of an isolated photon in association with at least two b-quark jets. The measurements consider photons with rapidities vertical bar y(gamma)vertical bar < 1.0 and transverse momenta 30 < p(T)(gamma) < 200 GeV. The b-quark jets are required to have p(T)(jet) > 15 GeVand vertical bar y(jet)vertical bar < 1.5. The ratio of differential production cross sections for gamma + 2 b-jets to gamma + b-jet as a function of p(T)(gamma) is also presented. The results are based on the proton-antiproton collision data at root s = 1.96 TeV collected with the D0 detector at the Fermilab Tevatron Collider. The measured cross sections and their ratios are compared to the next- to- leading order perturbative QCD calculations as well as predictions based on the k(T)- factorization approach and those from the sherpa and pythia Monte Carlo event generators
    corecore