429 research outputs found

    Phase stability of lanthanum orthovanadate at high-pressure

    Full text link
    When monoclinic monazite-type LaVO4 (space group P21/n) is squeezed up to 12 GPa at room temperature, a phase transition to another monoclinic phase has been found. The structure of the high-pressure phase of LaVO4 is indexed with the same space group (P21/n), but with a larger unit-cell in which the number of atoms is doubled. The transition leads to an 8% increase in the density of LaVO4. The occurrence of such a transition has been determined by x-ray diffraction, Raman spectroscopy, and ab initio calculations. The combination of the three techniques allows us to also characterize accurately the pressure evolution of unit-cell parameters and the Raman (and IR)-active phonons of the low- and high-pressure phase. In particular, room-temperature equations of state have been determined. The changes driven by pressure in the crystal structure induce sharp modifications in the color of LaVO4 crystals, suggesting that behind the monoclinic-to-monoclinic transition there are important changes of the electronic properties of LaVO4.Comment: 39 pages, 6 tables, 7 figure

    Integrated impedance bridge for absolute capacitance measurements at cryogenic temperatures and finite magnetic fields

    Full text link
    We developed an impedance bridge that operates at cryogenic temperatures (down to 60 mK) and in perpendicular magnetic fields up to at least 12 T. This is achieved by mounting a GaAs HEMT amplifier perpendicular to a printed circuit board containing the device under test and thereby parallel to the magnetic field. The measured amplitude and phase of the output signal allows for the separation of the total impedance into an absolute capacitance and a resistance. Through a detailed noise characterization, we find that the best resolution is obtained when operating the HEMT amplifier at the highest gain. We obtained a resolution in the absolute capacitance of 6.4~aF/Hz/\sqrt{\textrm{Hz}} at 77 K on a comb-drive actuator, while maintaining a small excitation amplitude of 15~kBT/ek_\text{B} T/e. We show the magnetic field functionality of our impedance bridge by measuring the quantum Hall plateaus of a top-gated hBN/graphene/hBN heterostructure at 60~mK with a probe signal of 12.8~kBT/ek_\text{B} T/e.Comment: 7 pages, 5 figure

    Identification and quantification of microplastics in wastewater using focal plane array-based reflectance micro-FT-IR imaging

    Get PDF
    Microplastics (<5 mm) have been documented in environmental samples on a global scale. While these pollutants may enter aquatic environments via wastewater treatment facilities, the abundance of microplastics in these matrices has not been investigated. Although efficient methods for the analysis of microplastics in sediment samples and marine organisms have been published, no methods have been developed for detecting these pollutants within organic-rich wastewater samples. In addition, there is no standardized method for analyzing microplastics isolated from environmental samples. In many cases, part of the identification protocol relies on visual selection before analysis, which is open to bias. In order to address this, a new method for the analysis of microplastics in wastewater was developed. A pretreatment step using 30% hydrogen peroxide (H2O2) was employed to remove biogenic material, and focal plane array (FPA)-based reflectance micro-Fourier-transform (FT-IR) imaging was shown to successfully image and identify different microplastic types (polyethylene, polypropylene, nylon-6, polyvinyl chloride, polystyrene). Microplastic-spiked wastewater samples were used to validate the methodology, resulting in a robust protocol which was nonselective and reproducible (the overall success identification rate was 98.33%). The use of FPA-based micro-FT-IR spectroscopy also provides a considerable reduction in analysis time compared with previous methods, since samples that could take several days to be mapped using a single-element detector can now be imaged in less than 9 h (circular filter with a diameter of 47 mm). This method for identifying and quantifying microplastics in wastewater is likely to provide an essential tool for further research into the pathways by which microplastics enter the environment.This work is funded by a NERC (Natural Environment Research Council) CASE studentship (NE/K007521/1) with contribution from industrial partner Fera Science Ltd., United Kingdom. The authors would like to thank Peter Vale, from Severn Trent Water Ltd, for providing access to and additionally Ashley Howkins (Brunel University London) for providing travel and assistance with the sampling of the Severn Trent wastewater treatment plant in Derbyshire, UK. We are grateful to Emma Bradley and Chris Sinclair for providing helpful suggestions for our research

    Pre-processing and differential expression analysis of Agilent microRNA arrays using the AgiMicroRna Bioconductor library

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The main research tool for identifying microRNAs involved in specific cellular processes is gene expression profiling using microarray technology. Agilent is one of the major producers of microRNA arrays, and microarray data are commonly analyzed by using R and the functions and packages collected in the Bioconductor project. However, an analytical package that integrates the specific characteristics of microRNA Agilent arrays has been lacking.</p> <p>Results</p> <p>This report presents the new bioinformatic tool <it>AgiMicroRNA </it>for the pre-processing and differential expression analysis of Agilent microRNA array data. The software is implemented in the open-source statistical scripting language R and is integrated in the Bioconductor project (<url>http://www.bioconductor.org</url>) under the GPL license. For the pre-processing of the microRNA signal, <it>AgiMicroRNA </it>incorporates the <it>robust multiarray average algorithm</it>, a method that produces a summary measure of the microRNA expression using a linear model that takes into account the probe affinity effect. To obtain a normalized microRNA signal useful for the statistical analysis, <it>AgiMicroRna </it>offers the possibility of employing either the processed signal estimated by the <it>robust multiarray average algorithm </it>or the processed signal produced by the Agilent image analysis software. The <it>AgiMicroRNA </it>package also incorporates different graphical utilities to assess the quality of the data. <it>AgiMicroRna </it>uses the linear model features implemented in the <it>limma </it>package to assess the differential expression between different experimental conditions and provides links to the <it>miRBase </it>for those microRNAs that have been declared as significant in the statistical analysis.</p> <p>Conclusions</p> <p><it>AgiMicroRna </it>is a rational collection of Bioconductor functions that have been wrapped into specific functions in order to ease and systematize the pre-processing and statistical analysis of Agilent microRNA data. The development of this package contributes to the Bioconductor project filling the gap in microRNA array data analysis.</p

    High quality RNA isolation from Aedes aegypti midguts using laser microdissection microscopy

    Get PDF
    Background: Laser microdissection microscopy (LMM) has potential as a research tool because it allows precise excision of target tissues or cells from a complex biological specimen, and facilitates tissue-specific sample preparation. However, this method has not been used in mosquito vectors to date. To this end, we have developed an LMM method to isolate midgut RNA using Aedes aegypti

    Pre-processing Agilent microarray data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pre-processing methods for two-sample long oligonucleotide arrays, specifically the Agilent technology, have not been extensively studied. The goal of this study is to quantify some of the sources of error that affect measurement of expression using Agilent arrays and to compare Agilent's Feature Extraction software with pre-processing methods that have become the standard for normalization of cDNA arrays. These include log transformation followed by loess normalization with or without background subtraction and often a between array scale normalization procedure. The larger goal is to define best study design and pre-processing practices for Agilent arrays, and we offer some suggestions.</p> <p>Results</p> <p>Simple loess normalization without background subtraction produced the lowest variability. However, without background subtraction, fold changes were biased towards zero, particularly at low intensities. ROC analysis of a spike-in experiment showed that differentially expressed genes are most reliably detected when background is not subtracted. Loess normalization and no background subtraction yielded an AUC of 99.7% compared with 88.8% for Agilent processed fold changes. All methods performed well when error was taken into account by t- or z-statistics, AUCs ≥ 99.8%. A substantial proportion of genes showed dye effects, 43% (99%<it>CI </it>: 39%, 47%). However, these effects were generally small regardless of the pre-processing method.</p> <p>Conclusion</p> <p>Simple loess normalization without background subtraction resulted in low variance fold changes that more reliably ranked gene expression than the other methods. While t-statistics and other measures that take variation into account, including Agilent's z-statistic, can also be used to reliably select differentially expressed genes, fold changes are a standard measure of differential expression for exploratory work, cross platform comparison, and biological interpretation and can not be entirely replaced. Although dye effects are small for most genes, many array features are affected. Therefore, an experimental design that incorporates dye swaps or a common reference could be valuable.</p
    corecore