33 research outputs found

    Dissection of the Barley 2L1.0 region carrying the ‘Laevigatum’ quantitative resistance gene to leaf rust using Near-Isogenic lines (NIL) and subNIL

    Get PDF
    Partial resistance to leaf rust (Puccinia hordei G. H. Otth) in barley is a quantitative resistance that is not based on hypersensitivity. This resistance hampers haustorium formation, resulting in a long latency period in greenhouse tests. The three most consistent quantitative trait loci (QTL) uncovered in the L94 × ‘Vada’ mapping population were introgressed by marker-assisted backcrossing into the susceptible L94 background to obtain near-isogenic lines (NIL). We also developed the reciprocal Vada-NIL for the susceptibility alleles of those QTL. The QTL Rphq2 affected latency period of P. hordei more than the QTL Rphq3 and Rphq4. The NIL confirmed the contribution of Rphq2 to partial resistance by prolonging the latency period by 28 h on L94-Rphq2 and shortening the latency period by 23 h on Vada-rphq2. On the basis of flanking restriction fragment length polymorphism-based markers, Rphq2 appeared to be located near the telomeric end of the long arm of chromosome 2H, in a physical region of high recombination, making it the target QTL for map-based cloning. Microscopic observations on the NIL confirmed the nonhypersensitive nature of the resistance conferred by Rphq2. A high-resolution genetic map of the Rphq2 region was constructed using a population of 38 subNIL with overlapping L94 introgressions in Vada background across the region. Rphq2 mapped approximately 2 centimorgans (cM) proximal from the MlLa locus. By bulked segregant analysis and use of synteny with rice, we developed additional markers and fine-mapped Rphq2 to a genetic interval of 0.11 cM that corresponds to a stretch of sequence of, at most, 70 kb in rice. Analysis of this rice sequence revealed predicted genes encoding two proteins with unknown function, retrotransposon proteins, peroxidase proteins, and a protein similar to a mitogen-activated protein kinase kinase kinase (MAP3K). Possible homologs of those peroxidases and MAP3K in barley are candidates for the gene that contributes to partial resistance to P. hordei

    Identifying drivers of spatio-temporal dynamics in Barley Yellow Dwarf Virus epidemiology as a critical factor in disease control

    Get PDF
    Barley yellow dwarf virus (BYDV) is one of the most important viral diseases of small grains worldwide. An understanding of its epidemiology is crucial to control this disease in a sustainable way. The virus moves through the agricultural landscape via cereal aphids as vectors. Understanding movement of these aphids in space and time is of key importance and in doing so, the spatial and temporal variables that influence BYDV epidemiology can be identified. The presence of summer hosts, crop rotation, crop diversity, agricultural practices and climate variables are crucial. Through digitalization, spatial (e.g. land-use) and temporal (e.g. weather) information is becoming more readily available. Including this information into a prediction model could improve decision support systems that will rationalize the decision-making process towards a more integrated control of the disease

    Pathotype variation of barley powdery mildew in Western Australia

    Get PDF
    Barley powdery mildew caused by the fungus Blumeria graminis f. sp. hordei (Bgh) has emerged as the most damaging disease of barley in Western Australia (WA). Many of the available cultivars display high levels of disease in the field when climatic conditions are conducive. As a result, fungicides have become the main method of disease control in the last 10 years. Different types and sources of genetic disease resistance are available but to optimise their deployment it is necessary to evaluate the spectrum of pathotypes present in the pathogen population. Sixty isolates of Bgh were collected in the 2009 season from 9 locations, single spored and characterised by infection on reference barley lines and cultivars. Eighteen unique pathotypes were resolved. Virulence against many of the R-genes in the reference lines was present in at least one pathotype. Isolates were virulent against 16 out of a total of 23 resistance gene combinations. Undefeated resistance genes included the major R-genes Mla-6, Mla-9, Ml-ra and the combinations of Mla-1 plus Mla-A12 and Mla-6 plus Mla-14 and Mla-13 plus Ml-Ru3 together with the recessive resistance gene mlo-5. There was significant pathotype spatial differentiation suggesting limited gene flow between different regions with WA or localised selection pressures and proliferation. On the basis of the results we recommend a number of strategies to manage powdery mildew disease levels within WA

    Isolation and fine mapping of Rps6: An intermediate host resistance gene in barley to wheat stripe rust

    Get PDF
    A plant may be considered a nonhost of a pathogen if all known genotypes of a plant species are resistant to all known isolates of a pathogen species. However, if a small number of genotypes are susceptible to some known isolates of a pathogen species this plant maybe considered an intermediate host. Barley (Hordeum vulgare) is an intermediate host for Puccinia striiformis f. sp. tritici (Pst), the causal agent of wheat stripe rust. We wanted to understand the genetic architecture underlying resistance to Pst and to determine whether any overlap exists with resistance to the host pathogen, Puccinia striiformis f. sp. hordei (Psh). We mapped Pst resistance to chromosome 7H and show that host and intermediate host resistance is genetically uncoupled. Therefore, we designate this resistance locus Rps6. We used phenotypic and genotypic selection on F2:3 families to isolate Rps6 and fine mapped the locus to a 0.1 cM region. Anchoring of the Rps6 locus to the barley physical map placed the region on two adjacent fingerprinted contigs. Efforts are now underway to sequence the minimal tiling path and to delimit the physical region harbouring Rps6. This will facilitate additional marker development and permit identification of candidate genes in the region

    Tempered mlo broad-spectrum resistance to barley powdery mildew in an Ethiopian landrace

    Get PDF
    Recessive mutations in the Mlo gene confer broad spectrum resistance in barley (Hordeum vulgare) to powdery mildew (Blumeria graminis f. sp. hordei), a widespread and damaging disease. However, all alleles discovered to date also display deleterious pleiotropic effects, including the naturally occurring mlo-11 mutant which is widely deployed in Europe. Recessive resistance was discovered in Eth295, an Ethiopian landrace, which was developmentally controlled and quantitative without spontaneous cell wall appositions or extensive necrosis and loss of photosynthetic tissue. This resistance is determined by two copies of the mlo-11 repeat units, that occur upstream to the wild-type Mlo gene, compared to 11-12 in commonly grown cultivars and was designated mlo-11 (cnv2). mlo-11 repeat unit copy number-dependent DNA methylation corresponded with cytological and macroscopic phenotypic differences between copy number variants. Sequence data indicated mlo-11 (cnv2) formed via recombination between progenitor mlo-11 repeat units and the 3' end of an adjacent stowaway MITE containing region. mlo-11 (cnv2) is the only example of a moderated mlo variant discovered to date and may have arisen by natural selection against the deleterious effects of the progenitor mlo-11 repeat unit configuration

    Gene and QTL detection in a three-way barley cross under selection by a mixed model with kinship information using SNPs

    Get PDF
    Quantitative trait locus (QTL) detection is commonly performed by analysis of designed segregating populations derived from two inbred parental lines, where absence of selection, mutation and genetic drift is assumed. Even for designed populations, selection cannot always be avoided, with as consequence varying correlation between genotypes instead of uniform correlation. Akin to linkage disequilibrium mapping, ignoring this type of genetic relatedness will increase the rate of false-positives. In this paper, we advocate using mixed models including genetic relatedness, or ‘kinship’ information for QTL detection in populations where selection forces operated. We demonstrate our case with a three-way barley cross, designed to segregate for dwarfing, vernalization and spike morphology genes, in which selection occurred. The population of 161 inbred lines was screened with 1,536 single nucleotide polymorphisms (SNPs), and used for gene and QTL detection. The coefficient of coancestry matrix was estimated based on the SNPs and imposed to structure the distribution of random genotypic effects. The model incorporating kinship, coancestry, information was consistently superior to the one without kinship (according to the Akaike information criterion). We show, for three traits, that ignoring the coancestry information results in an unrealistically high number of marker–trait associations, without providing clear conclusions about QTL locations. We used a number of widely recognized dwarfing and vernalization genes known to segregate in the studied population as landmarks or references to assess the agreement of the mapping results with a priori candidate gene expectations. Additional QTLs to the major genes were detected for all traits as well

    New broad-spectrum resistance to septoria tritici blotch derived from synthetic hexaploid wheat

    Get PDF
    Septoria tritici blotch (STB), caused by the ascomycete Mycosphaerella graminicola, is one of the most devastating foliar diseases of wheat. We screened five synthetic hexaploid wheats (SHs), 13 wheat varieties that represent the differential set of cultivars and two susceptible checks with a global set of 20 isolates and discovered exceptionally broad STB resistance in SHs. Subsequent development and analyses of recombinant inbred lines (RILs) from a cross between the SH M3 and the highly susceptible bread wheat cv. Kulm revealed two novel resistance loci on chromosomes 3D and 5A. The 3D resistance was expressed in the seedling and adult plant stages, and it controlled necrosis (N) and pycnidia (P) development as well as the latency periods of these parameters. This locus, which is closely linked to the microsatellite marker Xgwm494, was tentatively designated Stb16q and explained from 41 to 71% of the phenotypic variation at seedling stage and 28–31% in mature plants. The resistance locus on chromosome 5A was specifically expressed in the adult plant stage, associated with SSR marker Xhbg247, explained 12–32% of the variation in disease, was designated Stb17, and is the first unambiguously identified and named QTL for adult plant resistance to M. graminicola. Our results confirm that common wheat progenitors might be a rich source of new Stb resistance genes/QTLs that can be deployed in commercial breeding programs
    corecore