11 research outputs found

    Reversible transitions between noradrenergic and mesenchymal tumor identities define cell plasticity in neuroblastoma

    Get PDF
    Noradrenergic and mesenchymal identities have been characterized in neuroblastoma cell lines according to their epigenetic landscapes and core regulatory circuitries. However, their relationship and relative contribution in patient tumors remain poorly defined. We now document spontaneous and reversible plasticity between the two identities, associated with epigenetic reprogramming, in several neuroblastoma models. Interestingly, xenografts with cells from each identity eventually harbor a noradrenergic phenotype suggesting that the microenvironment provides a powerful pressure towards this phenotype. Accordingly, such a noradrenergic cell identity is systematically observed in single-cell RNA-seq of 18 tumor biopsies and 15 PDX models. Yet, a subpopulation of these noradrenergic tumor cells presents with mesenchymal features that are shared with plasticity models, indicating that the plasticity described in these models has relevance in neuroblastoma patients. This work therefore emphasizes that intrinsic plasticity properties of neuroblastoma cells are dependent upon external cues of the environment to drive cell identity

    Role of the PHOX2B/GATA3/HAND2 Transcription Factors in Neuroblastoma Identity and Oncogenesis

    No full text
    Le neuroblastome est cancer du jeune enfant se développant au sein du système nerveux périphérique sympathique. Cette tumeur est caractérisée par sa grande hétérogénéité clinique : allant de formes régressant spontanément aux tumeurs de haut-risque, réfractaires aux traitements les plus agressifs. La survie à long terme des patients présentant un neuroblastome de haut-risque reste par ailleurs inférieure à 50%, ce qui souligne la nécessité de trouver de nouveaux traitements afin d’améliorer leur prise en charge thérapeutique.Récemment, en définissant le paysage épigénétique des cellules de neuroblastome, nous avons observé la présence de super-enhancers (SE). La caractérisation du paysage des SE dans les lignées de neuroblastome nous a permis de révéler l’hétérogénéité cellulaire du neuroblastome, composée de deux identités distinctes : noradrénergique et mésenchymateuse. Chacune des identités cellulaires est caractérisée par un circuit de régulation transcriptionnelle (CRC) : les facteurs PHOX2B, HAND2 et GATA3 définissent l’identité noradrénergique alors que les facteurs de la famille AP-1 gouvernent l’identité mésenchymateuse. Nous avons par ailleurs montré la différence de sensibilité aux chimiothérapies classiquement utilisées en clinique entre ces deux types cellulaires, avec une résistance accrue des cellules mésenchymateuses.Mon travail de thèse porte sur la caractérisation du rôle des facteurs de transcription PHOX2B et GATA3 dans l’établissement et le maintien de l’identité noradrénergique des cellules de neuroblastome. J’ai réalisé leur knock-out par CRISPR-Cas9 dans la lignée noradrénergique SH-SY5Y. L’inactivation de PHOX2B ne modifie ni le programme transcriptionnel ni le phénotype des cellules, arborant une identité noradrénergique. En revanche, les cellules inactivées pour GATA3 possèdent un phénotype cellulaire mésenchymateux ainsi que des capacités de migration, d’invasion et de résistance aux chimiothérapies. Le knock-out de PHOX2B et GATA3 entraine une diminution de la prolifération cellulaire, traduisant le phénomène d’addiction transcriptionnelle des cellules cancéreuses. La caractérisation du paysage épigénétique des cellules inactivées pour GATA3 démontre leur reprogrammation de l’identité noradrénergique vers l’identité mésenchymateuse avec l’effondrement des SE noradrénergiques ainsi que l’acquisition de SE mésenchymateux. GATA3 est donc indispensable pour le maintien de l’identité noradrénergique in vitro.Les résultats générés lors de ma thèse montrent que les facteurs de transcription impliqués dans un même CRC possèdent des rôles distincts dans l’identité cellulaire. La caractérisation de la dynamique de reprogrammation ainsi que des facteurs impliqués dans ce processus nous permettrons de mieux comprendre les phénomènes de plasticité cellulaire à l’origine de la progression tumorale et de la rechute thérapeutique des patients.Neuroblastoma is a pediatric tumor of the peripheral sympathetic nervous system characterized by its diversity of clinical presentations from spontaneous regression to highly aggressive tumors. Currently, the overall survival of high-risk neuroblastoma patients remains under 50% which highlight the need to find new therapeutic approaches to improve patient outcome.Recently, we defined the epigenetic landscape of neuroblastoma cell lines and observed the presence of super-enhancers (SE). The characterization of the SE landscape let us to define the heterogeneity of neuroblastoma cell identity with the presence of noradrenergic and mesenchymal cells. Both cell identities are governed by a core regulatory circuitry (CRC), composed by PHOX2B-HAND2-GATA3 in the noradrenergic cells and by AP-1 transcription factors in the mesenchymal cells. We also demonstrate the different behaviors of the cells regarding chemotherapy treatments with a higher resistance of the mesenchymal cells.My thesis aimed at deciphering the role of PHOX2B and GATA3 transcription factors in the establishment and the maintenance of the noradrenergic identity of neuroblastoma cells. To do this, PHOX2B and GATA3 were knock-out by CRISPR-Cas9 in the noradrenergic SH-SY5Y cell line. PHOX2B knock-out has no major impact neither on the transcriptomic profile nor the phenotype of the cells. PHOX2B knock-out cells still maintain their noradrenergic identity. In contrast, GATA3 knock-out cells harbor a mesenchymal phenotype showing higher ability to migrate, invade and being pore resistant to chemotherapy than control SH-SY5Y cells. Both PHOX2B and GATA3 knock-out decrease the SH-SY5Y cell proliferation in vitro and in vivo, which highlight the transcriptional dependency of the noradrenergic cells for their identity-related transcription factors. The characterization of the epigenetic landscape of GATA3 knock-out cells revealed their reprograming from the noradrenergic to the mesenchymal identity with the loss of noradrenergic SE and the acquisition of mesenchymal SE. These results demonstrate that GATA3 is essential for the maintenance of the noradrenergic identity in vitro.Altogether, these results show that transcription factors involved in a CRC can have distinct role in the cell identity. The characterization of the reprogramming dynamics as well as the factors involved in this process will allow us to better understand the cellular plasticity involved in the tumor progression and patient relapse

    Fibroblast heterogeneity in solid tumors: From single cell analysis to whole-body imaging

    No full text
    International audienceCancer-Associated Fibroblasts (CAFs) represent the most prominent component of the tumor microenvironment (TME). Recent studies demonstrated that CAF are heterogeneous and composed of different subpopulations exerting distinct functions in cancer. CAF populations differentially modulate various aspects of tumor growth, including cancer cell proliferation, extra-cellular matrix remodeling, metastatic dissemination, immunosuppression and resistance to treatment. Among other markers, the Fibroblast Activation Protein (FAP) led to the identification of a specific CAF subpopulation involved in metastatic spread and immunosuppression. Expression of FAP at the surface of CAF is detected in many different cancer types of poor prognosis. Thus, FAP recently appears as an appealing target for therapeutic and molecular imaging applications. In that context, 68 Ga-labeled radiopharmaceutical-FAP-inhibitors (FAPI) have been recently developed and validated for quantitatively mapping FAP expression over the whole-body using Positron Emission Tomography (PET/CT). In this review, we describe the main current knowledge on CAF subpopulations and their distinct functions in solid cancer, as well as the promising diagnostic and therapeutic implications of radionuclides targeting FAP

    Deciphering the spatial landscape and plasticity of immunosuppressive fibroblasts in breast cancer

    No full text
    International audienceAbstract Although heterogeneity of FAP+ Cancer-Associated Fibroblasts (CAF) has been described in breast cancer, their plasticity and spatial distribution remain poorly understood. Here, we analyze trajectory inference, deconvolute spatial transcriptomics at single-cell level and perform functional assays to generate a high-resolution integrated map of breast cancer (BC), with a focus on inflammatory and myofibroblastic (iCAF/myCAF) FAP+ CAF clusters. We identify 10 spatially-organized FAP+ CAF-related cellular niches, called EcoCellTypes, which are differentially localized within tumors. Consistent with their spatial organization, cancer cells drive the transition of detoxification-associated iCAF (Detox-iCAF) towards immunosuppressive extracellular matrix (ECM)-producing myCAF (ECM-myCAF) via a DPP4- and YAP-dependent mechanism. In turn, ECM-myCAF polarize TREM2+ macrophages, regulatory NK and T cells to induce immunosuppressive EcoCellTypes, while Detox-iCAF are associated with FOLR2+ macrophages in an immuno-protective EcoCellType. FAP+ CAF subpopulations accumulate differently according to the invasive BC status and predict invasive recurrence of ductal carcinoma in situ (DCIS), which could help in identifying low-risk DCIS patients eligible for therapeutic de-escalation

    Integrative analysis identifies lincRNAs up- and downstream of neuroblastoma driver genes

    Get PDF
    Abstract Long intergenic non-coding RNAs (lincRNAs) are emerging as integral components of signaling pathways in various cancer types. In neuroblastoma, only a handful of lincRNAs are known as upstream regulators or downstream effectors of oncogenes. Here, we exploit RNA sequencing data of primary neuroblastoma tumors, neuroblast precursor cells, neuroblastoma cell lines and various cellular perturbation model systems to define the neuroblastoma lincRNome and map lincRNAs up- and downstream of neuroblastoma driver genes MYCN, ALK and PHOX2B. Each of these driver genes controls the expression of a particular subset of lincRNAs, several of which are associated with poor survival and are differentially expressed in neuroblastoma tumors compared to neuroblasts. By integrating RNA sequencing data from both primary tumor tissue and cancer cell lines, we demonstrate that several of these lincRNAs are expressed in stromal cells. Deconvolution of primary tumor gene expression data revealed a strong association between stromal cell composition and driver gene status, resulting in differential expression of these lincRNAs. We also explored lincRNAs that putatively act upstream of neuroblastoma driver genes, either as presumed modulators of driver gene activity, or as modulators of effectors regulating driver gene expression. This analysis revealed strong associations between the neuroblastoma lincRNAs MIAT and MEG3 and MYCN and PHOX2B activity or expression. Together, our results provide a comprehensive catalogue of the neuroblastoma lincRNome, highlighting lincRNAs up- and downstream of key neuroblastoma driver genes. This catalogue forms a solid basis for further functional validation of candidate neuroblastoma lincRNAs

    Reversible transitions between noradrenergic and mesenchymal tumor identities define cell plasticity in neuroblastoma

    No full text
    Noradrenergic and mesenchymal identities have been characterized in neuroblastoma cell lines according to their epigenetic landscapes and core regulatory circuitries. However, their relationship and relative contribution in patient tumors remain poorly defined. We now document spontaneous and reversible plasticity between the two identities, associated with epigenetic reprogramming, in several neuroblastoma models. Interestingly, xenografts with cells from each identity eventually harbor a noradrenergic phenotype suggesting that the microenvironment provides a powerful pressure towards this phenotype. Accordingly, such a noradrenergic cell identity is systematically observed in single-cell RNA-seq of 18 tumor biopsies and 15 PDX models. Yet, a subpopulation of these noradrenergic tumor cells presents with mesenchymal features that are shared with plasticity models, indicating that the plasticity described in these models has relevance in neuroblastoma patients. This work therefore emphasizes that intrinsic plasticity properties of neuroblastoma cells are dependent upon external cues of the environment to drive cell identity.ISSN:2041-172

    Reversible transitions between noradrenergic and mesenchymal tumor identities define cell plasticity in neuroblastoma

    No full text
    Abstract Noradrenergic and mesenchymal identities have been characterized in neuroblastoma cell lines according to their epigenetic landscapes and core regulatory circuitries. However, their relationship and relative contribution in patient tumors remain poorly defined. We now document spontaneous and reversible plasticity between the two identities, associated with epigenetic reprogramming, in several neuroblastoma models. Interestingly, xenografts with cells from each identity eventually harbor a noradrenergic phenotype suggesting that the microenvironment provides a powerful pressure towards this phenotype. Accordingly, such a noradrenergic cell identity is systematically observed in single-cell RNA-seq of 18 tumor biopsies and 15 PDX models. Yet, a subpopulation of these noradrenergic tumor cells presents with mesenchymal features that are shared with plasticity models, indicating that the plasticity described in these models has relevance in neuroblastoma patients. This work therefore emphasizes that intrinsic plasticity properties of neuroblastoma cells are dependent upon external cues of the environment to drive cell identity

    Mayotte seismic crisis: building knowledge in near real-time by combining land and ocean-bottom seismometers, first results

    No full text
    International audienceSummary The brutal onset of seismicity offshore Mayotte island North of the Mozambique Channel, Indian Ocean, that occurred in May 2018 caught the population, authorities, and scientific community off guard. Around 20 potentially felt earthquakes were recorded in the first 5 days, up to magnitude Mw 5.9. The scientific community had little pre-existing knowledge of the seismic activity in the region due to poor seismic network coverage. During 2018 and 2019, the MAYOBS/REVOSIMA seismology group was progressively built between four French research institutions to improve instrumentation and data sets to monitor what we know now as an on-going exceptional sub-marine basaltic eruption. After the addition of 3 medium-band stations on Mayotte island and 1 on Grande Glorieuse island in early 2019, the data recovered from the Ocean Bottom Seismometers were regularly processed by the group to improve the location of the earthquakes detected daily by the land network. We first built a new local 1D velocity model and established specific data processing procedures. The local 1.66 low VP/VS ratio we estimated is compatible with a volcanic island context. We manually picked about 125,000 P and S phases on land and sea bottom stations to locate more than 5,000 events between February 2019 and May 2020. The earthquakes outline two separate seismic clusters offshore that we named Proximal and Distal. The Proximal cluster, located 10km offshore Mayotte eastern coastlines, is 20 to 50 km deep and has a cylindrical shape. The Distal cluster start 5 km to the east of the Proximal cluster and extends below Mayotte's new volcanic edifice, from 50 km up to 25 km depth. The two clusters appear seismically separated, however our dataset is insufficient to firmly demonstrate this

    Heterogeneity of neuroblastoma cell identity defined by transcriptional circuitries

    No full text
    International audienceNeuroblastoma is a tumor of the peripheral sympathetic nervous system(1), derived from multipotent neural crest cells (NCCs). To define core regulatory circuitries (CRCs) controlling the gene expression program of neuroblastoma, we established and analyzed the neuroblastoma super-enhancer landscape. We discovered three types of identity in neuroblastoma cell lines: a sympathetic noradrenergic identity, defined by a CRC module including the PHOX2B, HAND2 and GATA3 transcription factors (TFs); an NCC-like identity, driven by a CRC module containing AP-1 TFs; and a mixed type, further deconvoluted at the single-cell level. Treatment of the mixed type with chemotherapeutic agents resulted in enrichment of NCC-like cells. The noradrenergic module was validated by ChIP-seq. Functional studies demonstrated dependency of neuroblastoma with noradrenergic identity on PHOX2B, evocative of lineage addiction. Most neuroblastoma primary tumors express TFs from the noradrenergic and NCC-like modules. Our data demonstrate a previously unknown aspect of tumor heterogeneity relevant for neuroblastoma treatment strategies
    corecore