62 research outputs found

    Brouwer Fixed Point Theorem in the General Case

    Get PDF
    In this article we prove the Brouwer fixed point theorem for an arbitrary convex compact subset of εn with a non empty interior. This article is based on [15].Institute of Informatics, University of Białystok, PolandGrzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.Agata Darmochwał. Compact spaces. Formalized Mathematics, 1(2):383-386, 1990.Agata Darmochwał. Families of subsets, subspaces and mappings in topological spaces. Formalized Mathematics, 1(2):257-261, 1990.Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.Noboru Endou, Takashi Mitsuishi, and Yasunari Shidama. Convex sets and convex combinations. Formalized Mathematics, 11(1):53-58, 2003.Noboru Endou, Takashi Mitsuishi, and Yasunari Shidama. Dimension of real unitary space. Formalized Mathematics, 11(1):23-28, 2003.Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.Stanisława Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Formalized Mathematics, 1(3):607-610, 1990.Artur Korniłowicz and Yasunari Shidama. Intersections of intervals and balls in En/T. Formalized Mathematics, 12(3):301-306, 2004.Artur Korniłowicz and Yasunari Shidama. Brouwer fixed point theorem for disks on the plane. Formalized Mathematics, 13(2):333-336, 2005.Yatsuka Nakamura, Andrzej Trybulec, and Czesław Byliński. Bounded domains and unbounded domains. Formalized Mathematics, 8(1):1-13, 1999.Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.Karol Sieklucki. Geometria i topologia. PWN, 1979.Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.Andrzej Trybulec. A Borsuk theorem on homotopy types. Formalized Mathematics, 2(4):535-545, 1991.Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.Mirosław Wysocki and Agata Darmochwał. Subsets of topological spaces. Formalized Mathematics, 1(1):231-237, 1990

    Miscellaneous Facts about Open Functions and Continuous Functions

    Get PDF
    In this article we give definitions of open functions and continuous functions formulated in terms of "balls" of given topological spaces.Institute of Informatics, University of Białystok, Sosnowa 64, 15-887 Białystok, PolandGrzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.Leszek Borys. Paracompact and metrizable spaces. Formalized Mathematics, 2(4):481-485, 1991.Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.Agata Darmochwał and Yatsuka Nakamura. Metric spaces as topological spaces - fundamental concepts. Formalized Mathematics, 2(4):605-608, 1991.Stanisława Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Formalized Mathematics, 1(3):607-610, 1990.Artur Korniłowicz and Yasunari Shidama. Intersections of intervals and balls in En/T. Formalized Mathematics, 12(3):301-306, 2004.Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990.Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.Mariusz Żynel and Adam Guzowski. T0 topological spaces. Formalized Mathematics, 5(1):75-77, 1996

    Brouwer Fixed Point Theorem for Simplexes

    Get PDF
    In this article we prove the Brouwer fixed point theorem for an arbitrary simplex which is the convex hull of its n + 1 affinely indepedent vertices of εn. First we introduce the Lebesgue number, which for an arbitrary open cover of a compact metric space M is a positive real number so that any ball of about such radius must be completely contained in a member of the cover. Then we introduce the notion of a bounded simplicial complex and the diameter of a bounded simplicial complex. We also prove the estimation of diameter decrease which is connected with the barycentric subdivision. Finally, we prove the Brouwer fixed point theorem and compute the small inductive dimension of εn. This article is based on [16].Institute of Informatics, University of Białystok, PolandGrzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.Grzegorz Bancerek and Yasunari Shidama. Introduction to matroids. Formalized Mathematics, 16(4):325-332, 2008, doi:10.2478/v10037-008-0040-0.Leszek Borys. Paracompact and metrizable spaces. Formalized Mathematics, 2(4):481-485, 1991.Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990.Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.Agata Darmochwał. Compact spaces. Formalized Mathematics, 1(2):383-386, 1990.Agata Darmochwał. Families of subsets, subspaces and mappings in topological spaces. Formalized Mathematics, 1(2):257-261, 1990.Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.Alicia de la Cruz. Totally bounded metric spaces. Formalized Mathematics, 2(4):559-562, 1991.Roman Duda. Wprowadzenie do topologii. PWN, 1986.Noboru Endou, Takashi Mitsuishi, and Yasunari Shidama. Convex sets and convex combinations. Formalized Mathematics, 11(1):53-58, 2003.Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.Stanisława Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Formalized Mathematics, 1(3):607-610, 1990.Artur Korniłowicz. The correspondence between n-dimensional Euclidean space and the product of n real lines. Formalized Mathematics, 18(1):81-85, 2010, doi: 10.2478/v10037-010-0011-0.Yatsuka Nakamura, Andrzej Trybulec, and Czesław Byliński. Bounded domains and unbounded domains. Formalized Mathematics, 8(1):1-13, 1999.Adam Naumowicz. On Segre's product of partial line spaces. Formalized Mathematics, 9(2):383-390, 2001.Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.Karol Pąk. Small inductive dimension of topological spaces. Formalized Mathematics, 17(3):207-212, 2009, doi: 10.2478/v10037-009-0025-7.Karol Pąk. Affine independence in vector spaces. Formalized Mathematics, 18(1):87-93, 2010, doi: 10.2478/v10037-010-0012-z.Karol Pąk. Abstract simplicial complexes. Formalized Mathematics, 18(1):95-106, 2010, doi: 10.2478/v10037-010-0013-y.Karol Pąk. Sperner's lemma. Formalized Mathematics, 18(4):189-196, 2010, doi: 10.2478/v10037-010-0022-x.Karol Pąk. Continuity of barycentric coordinates in Euclidean topological spaces. Formalized Mathematics, 19(3):139-144, 2011, doi: 10.2478/v10037-011-0022-5.Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.Andrzej Trybulec. A Borsuk theorem on homotopy types. Formalized Mathematics, 2(4):535-545, 1991.Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990

    Small Inductive Dimension of Topological Spaces. Part II

    Get PDF
    In this paper we present basic properties of n-dimensional topological spaces according to the book [10]. In the article the formalization of Section 1.5 is completed.Institute of Computer Science, University of Białystok, PolandGrzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589-593, 1990.Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.Leszek Borys. Paracompact and metrizable spaces. Formalized Mathematics, 2(4):481-485, 1991.Agata Darmochwał. Families of subsets, subspaces and mappings in topological spaces. Formalized Mathematics, 1(2):257-261, 1990.Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.Ryszard Engelking. Teoria wymiaru. PWN, 1981.Robert Milewski. Bases of continuous lattices. Formalized Mathematics, 7(2):285-294, 1998.Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.Karol Pąk. Small inductive dimension of topological spaces. Formalized Mathematics, 17(3):207-212, 2009, doi: 10.2478/v10037-009-0025-7.Andrzej Trybulec. A Borsuk theorem on homotopy types. Formalized Mathematics, 2(4):535-545, 1991.Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.Mirosław Wysocki and Agata Darmochwał. Subsets of topological spaces. Formalized Mathematics, 1(1):231-237, 1990

    Planes and Spheres as Topological Manifolds. Stereographic Projection

    Get PDF
    The goal of this article is to show some examples of topological manifolds: planes and spheres in Euclidean space. In doing it, the article introduces the stereographic projection [25].Via del Pero 102, 54038 Montignoso, ItalyGrzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589-593, 1990.Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.Grzegorz Bancerek. Monoids. Formalized Mathematics, 3(2):213-225, 1992.Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.Czesław Byliński. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661-668, 1990.Agata Darmochwał. Families of subsets, subspaces and mappings in topological spaces. Formalized Mathematics, 1(2):257-261, 1990.Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.Agata Darmochwał and Yatsuka Nakamura. Metric spaces as topological spaces - fundamental concepts. Formalized Mathematics, 2(4):605-608, 1991.Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics, 2(4):475-480, 1991.Stanisława Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Formalized Mathematics, 1(3):607-610, 1990.Artur Korniłowicz and Yasunari Shidama. Intersections of intervals and balls in En/T Formalized Mathematics, 12(3):301-306, 2004.Artur Korniłowicz and Yasunari Shidama. Some properties of circles on the plane. Formalized Mathematics, 13(1):117-124, 2005.Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.John M. Lee. Introduction to Topological Manifolds. Springer-Verlag, New York Berlin Heidelberg, 2000.Robert Milewski. Bases of continuous lattices. Formalized Mathematics, 7(2):285-294, 1998.Yatsuka Nakamura, Artur Korniłowicz, Nagato Oya, and Yasunari Shidama. The real vector spaces of finite sequences are finite dimensional. Formalized Mathematics, 17(1):1-9, 2009, doi:10.2478/v10037-009-0001-2.Henryk Oryszczyszyn and Krzysztof Prażmowski. Real functions spaces. Formalized Mathematics, 1(3):555-561, 1990.Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.Beata Padlewska. Locally connected spaces. Formalized Mathematics, 2(1):93-96, 1991.Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.Karol Pąk. Basic properties of metrizable topological spaces. Formalized Mathematics, 17(3):201-205, 2009, doi: 10.2478/v10037-009-0024-8.Marco Riccardi. The definition of topological manifolds. Formalized Mathematics, 19(1):41-44, 2011, doi: 10.2478/v10037-011-0007-4.Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.Andrzej Trybulec. On the sets inhabited by numbers. Formalized Mathematics, 11(4):341-347, 2003.Wojciech A. Trybulec. Basis of real linear space. Formalized Mathematics, 1(5):847-850, 1990.Wojciech A. Trybulec. Linear combinations in real linear space. Formalized Mathematics, 1(3):581-588, 1990.Wojciech A. Trybulec. Subspaces and cosets of subspaces in real linear space. Formalized Mathematics, 1(2):297-301, 1990.Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.Mariusz Żynel and Adam Guzowski. T0 topological spaces. Formalized Mathematics, 5(1):75-77, 1996

    The Definition of Topological Manifolds

    Get PDF
    This article introduces the definition of n-locally Euclidean topological spaces and topological manifolds [13].Riccardi Marco - Via del Pero 102, 54038 Montignoso, ItalyGrzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.Agata Darmochwał. Compact spaces. Formalized Mathematics, 1(2):383-386, 1990.Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.Adam Grabowski. Properties of the product of compact topological spaces. Formalized Mathematics, 8(1):55-59, 1999.Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.Zbigniew Karno. Separated and weakly separated subspaces of topological spaces. Formalized Mathematics, 2(5):665-674, 1991.Zbigniew Karno. The lattice of domains of an extremally disconnected space. Formalized Mathematics, 3(2):143-149, 1992.Artur Korniłowicz and Yasunari Shidama. Intersections of intervals and balls in En/T. Formalized Mathematics, 12(3):301-306, 2004.John M. Lee. Introduction to Topological Manifolds. Springer-Verlag, New York Berlin Heidelberg, 2000.Robert Milewski. Bases of continuous lattices. Formalized Mathematics, 7(2):285-294, 1998.Beata Padlewska. Locally connected spaces. Formalized Mathematics, 2(1):93-96, 1991.Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.Karol Pąk. Basic properties of metrizable topological spaces. Formalized Mathematics, 17(3):201-205, 2009, doi: 10.2478/v10037-009-0024-8.Bartłomiej Skorulski. First-countable, sequential, and Frechet spaces. Formalized Mathematics, 7(1):81-86, 1998.Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990

    Epsilon Numbers and Cantor Normal Form

    Get PDF
    An epsilon number is a transfinite number which is a fixed point of an exponential map: ωϵ = ϵ. The formalization of the concept is done with use of the tetration of ordinals (Knuth's arrow notation, ↑). Namely, the ordinal indexing of epsilon numbers is defined as follows: and for limit ordinal λ: Tetration stabilizes at ω: Every ordinal number α can be uniquely written as where κ is a natural number, n1, n2, …, nk are positive integers, and β1 > β2 > … > βκ are ordinal numbers (βκ = 0). This decomposition of α is called the Cantor Normal Form of α.Białystok Technical University, PolandGrzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.Grzegorz Bancerek. Increasing and continuous ordinal sequences. Formalized Mathematics, 1(4):711-714, 1990.Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589-593, 1990.Grzegorz Bancerek. Ordinal arithmetics. Formalized Mathematics, 1(3):515-519, 1990.Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.Grzegorz Bancerek. Sequences of ordinal numbers. Formalized Mathematics, 1(2):281-290, 1990.Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.Tetsuya Tsunetou, Grzegorz Bancerek, and Yatsuka Nakamura. Zero-based finite sequences. Formalized Mathematics, 9(4):825-829, 2001.Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990

    Linear Transformations of Euclidean Topological Spaces

    Get PDF
    We introduce linear transformations of Euclidean topological spaces given by a transformation matrix. Next, we prove selected properties and basic arithmetic operations on these linear transformations. Finally, we show that a linear transformation given by an invertible matrix is a homeomorphism.Institute of Informatics, University of Białystok, PolandJesse Alama. The rank+nullity theorem. Formalized Mathematics, 15(3):137-142, 2007, doi:10.2478/v10037-007-0015-6.Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.Grzegorz Bancerek, Mitsuru Aoki, Akio Matsumoto, and Yasunari Shidama. Processes in Petri nets. Formalized Mathematics, 11(1):125-132, 2003.Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.Czesław Byliński. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661-668, 1990.Agata Darmochwał. Families of subsets, subspaces and mappings in topological spaces. Formalized Mathematics, 1(2):257-261, 1990.Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.Noboru Endou, Takashi Mitsuishi, and Yasunari Shidama. Dimension of real unitary space. Formalized Mathematics, 11(1):23-28, 2003.Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics, 2(4):475-480, 1991.Artur Korniłowicz. On the real valued functions. Formalized Mathematics, 13(1):181-187, 2005.Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.Anna Lango and Grzegorz Bancerek. Product of families of groups and vector spaces. Formalized Mathematics, 3(2):235-240, 1992.Robert Milewski. Associated matrix of linear map. Formalized Mathematics, 5(3):339-345, 1996.Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.Karol Pąk. Basic properties of determinants of square matrices over a field. Formalized Mathematics, 15(1):17-25, 2007, doi:10.2478/v10037-007-0003-x.Karol Pąk. Basic properties of the rank of matrices over a field. Formalized Mathematics, 15(4):199-211, 2007, doi:10.2478/v10037-007-0024-5.Karol Pąk. Solutions of linear equations. Formalized Mathematics, 16(1):81-90, 2008, doi:10.2478/v10037-008-0012-4.Karol Pąk. Linear map of matrices. Formalized Mathematics, 16(3):269-275, 2008, doi:10.2478/v10037-008-0032-0.Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.Wojciech A. Trybulec. Non-contiguous substrings and one-to-one finite sequences. Formalized Mathematics, 1(3):569-573, 1990.Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.Xiaopeng Yue, Xiquan Liang, and Zhongpin Sun. Some properties of some special matrices. Formalized Mathematics, 13(4):541-547, 2005.Katarzyna Zawadzka. The sum and product of finite sequences of elements of a field. Formalized Mathematics, 3(2):205-211, 1992.Katarzyna Zawadzka. The product and the determinant of matrices with entries in a field. Formalized Mathematics, 4(1):1-8, 1993

    Vector Functions and their Differentiation Formulas in 3-dimensional Euclidean Spaces

    Get PDF
    In this article, we first extend several basic theorems of the operation of vector in 3-dimensional Euclidean spaces. Then three unit vectors: e1, e2, e3 and the definition of vector function in the same spaces are introduced. By dint of unit vector the main operation properties as well as the differentiation formulas of vector function are shown [12].Liang Xiquan - Qingdao University of Science and Technology, ChinaZhao Piqing - Qingdao University of Science and Technology, ChinaBai Ou - University of Science and Technology of China, Hefei, ChinaGrzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.Czesław Byliński. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661-668, 1990.Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.Jarosław Kotowicz. Partial functions from a domain to the set of real numbers. Formalized Mathematics, 1(4):703-709, 1990.Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.Konrad Raczkowski and Paweł Sadowski. Real function differentiability. Formalized Mathematics, 1(4):797-801, 1990.Murray R. Spiegel. Vector Analysis and an Introduction to Tensor Analysis. McGraw-Hill Book Company, New York, 1959.Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990

    Conway's Games and Some of their Basic Properties

    Get PDF
    We formulate a few basic concepts of J. H. Conway's theory of games based on his book [6]. This is a first step towards formalizing Conway's theory of numbers into Mizar, which is an approach to proving the existence of a FIELD (i.e., a proper class that satisfies the axioms of a real-closed field) that includes the reals and ordinals, thus providing a uniform, independent and simple approach to these two constructions that does not go via the rational numbers and hence does for example not need the notion of a quotient field. In this first article on Conway's games, we provide a definition of games, their birthdays (or ranks), their trees (a notion which is not in Conway's book, but is useful as a tool), their negates and their signs, together with some elementary properties of these notions. If one is interested only in Conway's numbers, it would have been easier to define them directly, but going via the notion of a game is a more general approach in the sense that a number is a special instance of a game and that there is a rich theory of games that are not numbers. The main obstacle in formulating these topics in Mizar is that all definitions are highly recursive, which is not entirely simple to translate into the Mizar language. For example, according to Conway's definition, a game is an object consisting of left and right options which are themselves games, and this is by definition the only way to construct a game. This cannot directly be translated into Mizar, but a theorem is included in the article which proves that our definition is equivalent to Conway's.Institute of Applied Analysis, University of Ulm, 89069 Ulm, GermanyGrzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.J. H. Conway. On numbers and games. A K Peters Ltd., Natick, MA, second edition, 2001.Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990
    • …
    corecore