The Definition of Topological Manifolds

Marco Riccardi
Via del Pero 102
54038 Montignoso, Italy

Abstract

Summary. This article introduces the definition of n-locally Euclidean topological spaces and topological manifolds [13].

MML identifier: MFOLD_1, version: $\underline{7.11 .074 .156 .1112}$

The papers [8], [1], [6], [15], [7], [18], [3], [4], [17], [2], [16], [9], [19], [20], [11], [12], [10], [14], and [5] provide the terminology and notation for this paper.

1. Preliminaries

Let x, y be sets. Observe that $\{\langle x, y\rangle\}$ is one-to-one.
In the sequel n denotes a natural number.
One can prove the following two propositions:
(1) For every non empty topological space T holds T and $T \upharpoonright \Omega_{T}$ are homeomorphic.
(2) Let X be a non empty subspace of $\mathcal{E}_{\mathrm{T}}^{n}$ and f be a function from X into \mathbb{R}^{1}. Suppose f is continuous. Then there exists a function g from X into $\mathcal{E}_{\mathrm{T}}^{n}$ such that
(i) for every point a of X and for every point b of $\mathcal{E}_{\mathrm{T}}^{n}$ and for every real number r such that $a=b$ and $f(a)=r$ holds $g(b)=r \cdot b$, and
(ii) g is continuous.

Let us consider n and let S be a subset of $\mathcal{E}_{\mathrm{T}}^{n}$. We say that S is ball if and only if:
(Def. 1) There exists a point p of $\mathcal{E}_{\mathrm{T}}^{n}$ and there exists a real number r such that $S=\operatorname{Ball}(p, r)$.

Let us consider n. Observe that there exists a subset of $\mathcal{E}_{\mathrm{T}}^{n}$ which is ball and every subset of $\mathcal{E}_{\mathrm{T}}^{n}$ which is ball is also open.

Let us consider n. One can verify that there exists a subset of $\mathcal{E}_{\mathrm{T}}^{n}$ which is non empty and ball.

In the sequel p denotes a point of $\mathcal{E}_{\mathrm{T}}^{n}$ and r denotes a real number.
The following proposition is true
(3) For every open subset S of $\mathcal{E}_{\mathrm{T}}^{n}$ such that $p \in S$ there exists ball subset B of $\mathcal{E}_{\mathrm{T}}^{n}$ such that $B \subseteq S$ and $p \in B$.
Let us consider n, p, r. The functor $\mathbb{B}_{r}(p)$ yields a subspace of $\mathcal{E}_{\mathrm{T}}^{n}$ and is defined as follows:
(Def. 2) $\quad \mathbb{B}_{r}(p)=\mathcal{E}_{\mathrm{T}}^{n} \upharpoonright \operatorname{Ball}(p, r)$.
Let us consider n. The functor \mathbb{B}^{n} yields a subspace of $\mathcal{E}_{\mathrm{T}}^{n}$ and is defined as follows:
(Def. 3) $\quad \mathbb{B}^{n}=\mathbb{B}_{1}\left(0_{\mathcal{E}_{\mathrm{T}}^{n}}\right)$.
Let us consider n. One can verify that \mathbb{B}^{n} is non empty. Let us consider p and let s be a positive real number. Observe that $\mathbb{B}_{s}(p)$ is non empty.

The following propositions are true:
(4) The carrier of $\mathbb{B}_{r}(p)=\operatorname{Ball}(p, r)$.
(5) If $n \neq 0$ and p is a point of \mathbb{B}^{n}, then $|p|<1$.
(6) Let f be a function from \mathbb{B}^{n} into $\mathcal{E}_{\mathrm{T}}^{n}$. Suppose $n \neq 0$ and for every point a of \mathbb{B}^{n} and for every point b of $\mathcal{E}_{\mathrm{T}}^{n}$ such that $a=b$ holds $f(a)=\frac{1}{1-|b| \cdot|b|} \cdot b$. Then f is homeomorphism.
(7) Let r be a positive real number and f be a function from \mathbb{B}^{n} into $\mathbb{B}_{r}(p)$. Suppose $n \neq 0$ and for every point a of \mathbb{B}^{n} and for every point b of $\mathcal{E}_{\mathrm{T}}^{n}$ such that $a=b$ holds $f(a)=r \cdot b+p$. Then f is homeomorphism.
(8) \mathbb{B}^{n} and $\mathcal{E}_{\mathrm{T}}^{n}$ are homeomorphic.

In the sequel q denotes a point of $\mathcal{E}_{\mathrm{T}}^{n}$.
We now state three propositions:
(9) For all positive real numbers r, s holds $\mathbb{B}_{r}(p)$ and $\mathbb{B}_{s}(q)$ are homeomorphic.
(10) For every non empty ball subset B of $\mathcal{E}_{\mathrm{T}}^{n}$ holds B and $\Omega_{\mathcal{E}_{\mathrm{T}}^{n}}$ are homeomorphic.
(11) Let M, N be non empty topological spaces, p be a point of M, U be a neighbourhood of p, and B be an open subset of N. Suppose U and B are homeomorphic. Then there exists an open subset V of M and there exists an open subset S of N such that $V \subseteq U$ and $p \in V$ and V and S are homeomorphic.

2. MANifold

In the sequel M is a non empty topological space.
Let us consider n, M. We say that M is n-locally Euclidean if and only if the condition (Def. 4) is satisfied.
(Def. 4) Let p be a point of M. Then there exists a neighbourhood U of p and there exists an open subset S of $\mathcal{E}_{\mathrm{T}}^{n}$ such that U and S are homeomorphic.
Let us consider n. Observe that $\mathcal{E}_{\mathrm{T}}^{n}$ is n-locally Euclidean.
Let us consider n. Observe that there exists a non empty topological space which is n-locally Euclidean.

We now state two propositions:
(12) M is n-locally Euclidean if and only if for every point p of M there exists a neighbourhood U of p and there exists ball subset B of $\mathcal{E}_{\mathrm{T}}^{n}$ such that U and B are homeomorphic.
(13) M is n-locally Euclidean if and only if for every point p of M there exists a neighbourhood U of p such that U and $\Omega_{\mathcal{E}_{\mathrm{T}}^{n}}$ are homeomorphic.
Let us consider n. Observe that every non empty topological space which is n-locally Euclidean is also first-countable.

Let us note that every non empty topological space which is 0-locally Euclidean is also discrete and every non empty topological space which is discrete is also 0-locally Euclidean.

Let us consider n. One can verify that $\mathcal{E}_{\mathrm{T}}^{n}$ is second-countable.
Let us consider n. Note that there exists a non empty topological space which is second-countable, Hausdorff, and n-locally Euclidean.

Let us consider n, M. We say that M is n-manifold if and only if:
(Def. 5) M is second-countable, Hausdorff, and n-locally Euclidean.
Let us consider M. We say that M is manifold-like if and only if:
(Def. 6) There exists n such that M is n-manifold.
Let us consider n. Observe that there exists a non empty topological space which is n-manifold.

Let us consider n. One can check the following observations:

* every non empty topological space which is n-manifold is also secondcountable, Hausdorff, and n-locally Euclidean,
* every non empty topological space which is second-countable, Hausdorff, and n-locally Euclidean is also n-manifold, and
* every non empty topological space which is n-manifold is also manifoldlike.
Let us note that every non empty topological space which is second-countable and discrete is also 0 -manifold.

Let us consider n and let M be an n-manifold non empty topological space. One can verify that every non empty subspace of M which is open is also n manifold.

Let us note that there exists a non empty topological space which is manifoldlike.

A manifold is a manifold-like non empty topological space.

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
[2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[3] Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[4] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[5] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[6] Agata Darmochwał. Compact spaces. Formalized Mathematics, 1(2):383-386, 1990.
[7] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
[8] Adam Grabowski. Properties of the product of compact topological spaces. Formalized Mathematics, 8(1):55-59, 1999.
[9] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[10] Zbigniew Karno. Separated and weakly separated subspaces of topological spaces. Formalized Mathematics, 2(5):665-674, 1991.
[11] Zbigniew Karno. The lattice of domains of an extremally disconnected space. Formalized Mathematics, 3(2):143-149, 1992.
[12] Artur Korniłowicz and Yasunari Shidama. Intersections of intervals and balls in $\mathcal{E}_{\mathrm{T}}^{n}$. Formalized Mathematics, 12(3):301-306, 2004.
[13] John M. Lee. Introduction to Topological Manifolds. Springer-Verlag, New York Berlin Heidelberg, 2000.
[14] Robert Milewski. Bases of continuous lattices. Formalized Mathematics, 7(2):285-294, 1998.
[15] Beata Padlewska. Locally connected spaces. Formalized Mathematics, 2(1):93-96, 1991.
[16] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
[17] Karol Pąk. Basic properties of metrizable topological spaces. Formalized Mathematics, 17(3):201-205, 2009, doi: 10.2478/v10037-009-0024-8.
[18] Bartłomiej Skorulski. First-countable, sequential, and Frechet spaces. Formalized Mathematics, 7(1):81-86, 1998.
[19] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.
[20] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
Received August 17, 2010

