Planes and Spheres as Topological Manifolds. Stereographic Projection

Marco Riccardi
Via del Pero 102
54038 Montignoso
Italy

Abstract

Summary. The goal of this article is to show some examples of topological manifolds: planes and spheres in Euclidean space. In doing it, the article introduces the stereographic projection [25].

MML identifier: MFOLD_2, version: $\underline{7.12 .014 .167 .1133}$

The papers [29], [34], [9], [14], [40], [41], [11], [10], [4], [2], [18], [13], [31], [20], [21], [30], [32], [16], [17], [35], [26], [1], [22], [38], [36], [24], [19], [37], [28], [6], [15], [8], [27], [39], [3], [42], [12], [23], [7], [5], and [33] provide the notation and terminology for this paper.

1. Preliminaries

Let us observe that \emptyset is \emptyset-valued and \emptyset is onto.
Next we state three propositions:
(1) For every function f and for every set Y holds $\operatorname{dom}(Y \upharpoonright f)=f^{-1}(Y)$.
(2) For every function f and for all sets Y_{1}, Y_{2} such that $Y_{2} \subseteq Y_{1}$ holds $\left(Y_{1} \mid f\right)^{-1}\left(Y_{2}\right)=f^{-1}\left(Y_{2}\right)$.
(3) Let S, T be topological structures and f be a function from S into T. If f is homeomorphism, then f^{-1} is homeomorphism.
Let S, T be topological structures. Let us note that the predicate S and T are homeomorphic is symmetric.

For simplicity, we use the following convention: T_{1}, T_{2}, T_{3} denote topological spaces, A_{1} denotes a subset of T_{1}, A_{2} denotes a subset of T_{2}, and A_{3} denotes a subset of T_{3}.
(C) 2012 University of Białystok CC-BY-SA License ver. 3.0 or later

Next we state several propositions:
(4) Let f be a function from T_{1} into T_{2}. Suppose f is homeomorphism. Let g be a function from $T_{1} \upharpoonright f^{-1}\left(A_{2}\right)$ into $T_{2} \upharpoonright A_{2}$. If $g=A_{2} \upharpoonright f$, then g is homeomorphism.
(5) For every function f from T_{1} into T_{2} such that f is homeomorphism holds $f^{-1}\left(A_{2}\right)$ and A_{2} are homeomorphic.
(6) If A_{1} and A_{2} are homeomorphic, then A_{2} and A_{1} are homeomorphic.
(7) If A_{1} and A_{2} are homeomorphic, then A_{1} is empty iff A_{2} is empty.
(8) If A_{1} and A_{2} are homeomorphic and A_{2} and A_{3} are homeomorphic, then A_{1} and A_{3} are homeomorphic.
(9) If T_{1} is second-countable and T_{1} and T_{2} are homeomorphic, then T_{2} is second-countable.
In the sequel n, k are natural numbers and M, N are non empty topological spaces.

The following propositions are true:
(10) If M is Hausdorff and M and N are homeomorphic, then N is Hausdorff.
(11) If M is n-locally Euclidean and M and N are homeomorphic, then N is n-locally Euclidean.
(12) If M is n-manifold and M and N are homeomorphic, then N is n manifold.
(13) Let x_{1}, x_{2} be finite sequences of elements of \mathbb{R} and i be an element of \mathbb{N}. If $i \in \operatorname{dom}\left(x_{1} \bullet x_{2}\right)$, then $\left(x_{1} \bullet x_{2}\right)(i)=\left(x_{1}\right)_{i} \cdot\left(x_{2}\right)_{i}$ and $\left(x_{1} \bullet x_{2}\right)_{i}=\left(x_{1}\right)_{i} \cdot\left(x_{2}\right)_{i}$.
(14) For all finite sequences $x_{1}, x_{2}, y_{1}, y_{2}$ of elements of \mathbb{R} such that len $x_{1}=$ len x_{2} and len $y_{1}=\operatorname{len} y_{2}$ holds $x_{1}{ }^{\wedge} y_{1} \bullet x_{2} y_{2}=\left(x_{1} \bullet x_{2}\right)^{\wedge}\left(y_{1} \bullet y_{2}\right)$.
(15) For all finite sequences $x_{1}, x_{2}, y_{1}, y_{2}$ of elements of \mathbb{R} such that len $x_{1}=$ len x_{2} and len $y_{1}=\operatorname{len} y_{2}$ holds $\left|\left(x_{1} \wedge y_{1}, x_{2} \wedge y_{2}\right)\right|=\left|\left(x_{1}, x_{2}\right)\right|+\left|\left(y_{1}, y_{2}\right)\right|$.
In the sequel p, q, p_{1} are points of $\mathcal{E}_{\mathrm{T}}^{n}$ and r is a real number.
One can prove the following propositions:
(16) If $k \in \operatorname{Seg} n$, then $\left(p_{1}+p_{2}\right)(k)=p_{1}(k)+p_{2}(k)$.
(17) For every set X holds X is a linear combination of $\mathbb{R}_{\mathbb{R}}^{\operatorname{Seg} n}$ iff X is a linear combination of $\mathcal{E}_{\mathrm{T}}^{n}$.
(18) Let F be a finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^{n}, f_{1}$ be a function from $\mathcal{E}_{\mathrm{T}}^{n}$ into \mathbb{R}, F_{1} be a finite sequence of elements of $\mathbb{R}_{\mathbb{R}}^{\operatorname{Seg} n}$, and f_{2} be a function from $\mathbb{R}_{\mathbb{R}}^{\operatorname{Seg} n}$ into \mathbb{R}. If $f_{1}=f_{2}$ and $F=F_{1}$, then $f_{1} \cdot F=f_{2} \cdot F_{1}$.
(19) Let F be a finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^{n}$ and F_{1} be a finite sequence of elements of $\mathbb{R}_{\mathbb{R}}^{\mathrm{Seg} n}$. If $F_{1}=F$, then $\sum F=\sum F_{1}$.
(20) For every linear combination L_{2} of $\mathbb{R}_{\mathbb{R}}^{\operatorname{Seg} n}$ and for every linear combination L_{1} of $\mathcal{E}_{\mathrm{T}}^{n}$ such that $L_{1}=L_{2}$ holds $\sum L_{1}=\sum L_{2}$.
(21) Let A_{4} be a subset of $\mathbb{R}_{\mathbb{R}}^{\operatorname{Seg} n}$ and A_{5} be a subset of $\mathcal{E}_{\mathrm{T}}^{n}$. Suppose $A_{4}=A_{5}$. Then A_{4} is linearly independent if and only if A_{5} is linearly independent.
(22) For every subset V of $\mathcal{E}_{\mathrm{T}}^{n}$ such that $V=\mathbb{R N}$-Base n there exists a linear combination l of V such that $p=\sum l$.
(23) $\mathbb{R N}$-Base n is a basis of $\mathcal{E}_{\mathrm{T}}^{n}$.
(24) Let V be a subset of $\mathcal{E}_{\mathrm{T}}^{n}$. Then $V \in$ the topology of $\mathcal{E}_{\mathrm{T}}^{n}$ if and only if for every p such that $p \in V$ there exists r such that $r>0$ and $\operatorname{Ball}(p, r) \subseteq V$.
Let n be a natural number and let p be a point of $\mathcal{E}_{\mathrm{T}}^{n}$.
The functor InnerProduct p yields a function from $\mathcal{E}_{\mathrm{T}}^{n}$ into $\mathbb{R}^{\mathbf{1}}$ and is defined by:
(Def. 1) For every point q of $\mathcal{E}_{\mathrm{T}}^{n}$ holds (InnerProduct $\left.p\right)(q)=|(p, q)|$.
Let us consider n, p. Note that InnerProduct p is continuous.

2. Planes

Let us consider n and let us consider p, q. The functor $\operatorname{Plane}(p, q)$ yielding a subset of $\mathcal{E}_{\mathrm{T}}^{n}$ is defined as follows:
(Def. 2) Plane $(p, q)=\left\{y ; y\right.$ ranges over points of $\left.\mathcal{E}_{\mathrm{T}}^{n}:|(p, y-q)|=0\right\}$.
The following propositions are true:
(25) $\quad\left(\operatorname{transl}\left(p_{1}, \mathcal{E}_{\mathrm{T}}^{n}\right)\right)^{\circ} \operatorname{Plane}\left(p, p_{2}\right)=\operatorname{Plane}\left(p, p_{1}+p_{2}\right)$.
(26) If $p \neq 0_{\mathcal{E}_{\mathrm{T}}^{n}}$, then there exists a linearly independent subset A of $\mathcal{E}_{\mathrm{T}}^{n}$ such that $\overline{\bar{A}}=n-1$ and $\Omega_{\operatorname{Lin}(A)}=\operatorname{Plane}\left(p, 0_{\mathcal{E}_{\mathrm{T}}^{n}}\right)$.
(27) If $p_{1} \neq 0_{\mathcal{E}_{T}^{n}}$ and $p_{2} \neq 0_{\mathcal{E}_{\mathrm{T}}^{n}}$, then there exists a function R from $\mathcal{E}_{\mathrm{T}}^{n}$ into $\mathcal{E}_{\mathrm{T}}^{n}$ such that R is homeomorphism and $R^{\circ} \operatorname{Plane}\left(p_{1}, 0_{\mathcal{E}_{\mathrm{T}}^{n}}\right)=\operatorname{Plane}\left(p_{2}, 0_{\mathcal{E}_{\mathrm{T}}^{n}}\right)$.

Let us consider n and let us consider p, q. The functor $\operatorname{TPlane}(p, q)$ yields a non empty subspace of $\mathcal{E}_{\mathrm{T}}^{n}$ and is defined by:
(Def. 3) $\quad \operatorname{TPlane}(p, q)=\mathcal{E}_{\mathrm{T}}^{n} \upharpoonright \operatorname{Plane}(p, q)$.
The following three propositions are true:
(28) The base finite sequence of $n+1$ and $n+1=\left(0_{\mathcal{E}_{\mathrm{T}}^{n}}\right)^{\wedge}\langle 1\rangle$.
(29) For all points p, q of $\mathcal{E}_{\mathrm{T}}^{n+1}$ such that $p \neq 0_{\mathcal{E}_{\mathrm{T}}^{n+1}}$ holds $\mathcal{E}_{\mathrm{T}}^{n}$ and TPlane (p, q) are homeomorphic.
(30) For all points p, q of $\mathcal{E}_{\mathrm{T}}^{n+1}$ such that $p \neq 0_{\mathcal{E}_{\mathrm{T}}^{n+1}}$ holds TPlane (p, q) is n-manifold.

3. Spheres

Let us consider n. The functor \mathbb{S}^{n} yields a topological space and is defined by:
(Def. 4) $\quad \mathbb{S}^{n}=\operatorname{TopUnitCircle}(n+1)$.
Let us consider n. Note that \mathbb{S}^{n} is non empty.
Let us consider n, p and let S be a subspace of $\mathcal{E}_{\mathrm{T}}^{n}$. Let us assume that $p \in$ $\operatorname{Sphere}\left(\left(0_{\mathcal{E}_{\mathrm{T}}^{n}}\right), 1\right)$. The functor $\sigma_{S, p}$ yielding a function from S into TPlane $\left(p, 0_{\mathcal{E}_{\mathrm{T}}^{n}}\right)$ is defined as follows:
(Def. 5) For every q such that $q \in S$ holds $\left(\sigma_{S, p}\right)(q)=\frac{1}{1-|(q, p)|} \cdot(q-|(q, p)| \cdot p)$.
Next we state the proposition
(31) For every subspace S of $\mathcal{E}_{\mathrm{T}}^{n}$ such that $\Omega_{S}=\operatorname{Sphere}\left(\left(0_{\mathcal{E}_{\mathrm{T}}^{n}}\right), 1\right) \backslash\{p\}$ and $p \in \operatorname{Sphere}\left(\left(0_{\mathcal{E}_{\mathrm{T}}^{n}}\right), 1\right)$ holds $\sigma_{S, p}$ is homeomorphism.
Let us consider n. One can verify the following observations:

* \mathbb{S}^{n} is second-countable,
* \mathbb{S}^{n} is n-locally Euclidean, and
* \mathbb{S}^{n} is n-manifold.

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[3] Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589-593, 1990.
[4] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[5] Grzegorz Bancerek. Monoids. Formalized Mathematics, 3(2):213-225, 1992.
[6] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[7] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
[8] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[9] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[10] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[11] Czesław Bylinski. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[12] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[13] Czesław Byliński. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661-668, 1990.
[14] Agata Darmochwat. Families of subsets, subspaces and mappings in topological spaces. Formalized Mathematics, 1(2):257-261, 1990.
[15] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[16] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
[17] Agata Darmochwal and Yatsuka Nakamura. Metric spaces as topological spaces - fundamental concepts. Formalized Mathematics, 2(4):605-608, 1991.
[18] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[19] Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics, 2(4):475-480, 1991.
[20] Stanisława Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Formalized Mathematics, 1(3):607-610, 1990.
[21] Artur Korniłowicz and Yasunari Shidama. Intersections of intervals and balls in $\mathcal{E}_{\mathrm{T}}^{n}$. Formalized Mathematics, 12(3):301-306, 2004.
[22] Artur Korniłowicz and Yasunari Shidama. Some properties of circles on the plane. Formalized Mathematics, 13(1):117-124, 2005.
[23] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
[24] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.
[25] John M. Lee. Introduction to Topological Manifolds. Springer-Verlag, New York Berlin Heidelberg, 2000.
[26] Robert Milewski. Bases of continuous lattices. Formalized Mathematics, 7(2):285-294, 1998.
[27] Yatsuka Nakamura, Artur Korniłowicz, Nagato Oya, and Yasunari Shidama. The real vector spaces of finite sequences are finite dimensional. Formalized Mathematics, 17(1):19, 2009, doi:10.2478/v10037-009-0001-2.
[28] Henryk Oryszczyszyn and Krzysztof Prażmowski. Real functions spaces. Formalized Mathematics, 1(3):555-561, 1990.
[29] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.
[30] Beata Padlewska. Locally connected spaces. Formalized Mathematics, 2(1):93-96, 1991.
[31] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
[32] Karol Pąk. Basic properties of metrizable topological spaces. Formalized Mathematics, 17(3):201-205, 2009, doi: 10.2478/v10037-009-0024-8.
[33] Marco Riccardi. The definition of topological manifolds. Formalized Mathematics, 19(1):41-44, 2011, doi: 10.2478/v10037-011-0007-4.
[34] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
[35] Andrzej Trybulec. On the sets inhabited by numbers. Formalized Mathematics, 11(4):341347, 2003.
[36] Wojciech A. Trybulec. Basis of real linear space. Formalized Mathematics, 1(5):847-850, 1990.
[37] Wojciech A. Trybulec. Linear combinations in real linear space. Formalized Mathematics, 1(3):581-588, 1990.
[38] Wojciech A. Trybulec. Subspaces and cosets of subspaces in real linear space. Formalized Mathematics, 1(2):297-301, 1990.
[39] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.
[40] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[41] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.
[42] Mariusz Żynel and Adam Guzowski. T_{0} topological spaces. Formalized Mathematics, 5(1):75-77, 1996.

Received June 6, 2011

