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Epsilon Numbers and Cantor Normal Form
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Poland

Summary. An epsilon number is a transfinite number which is a fixed
point of an exponential map: ωε = ε. The formalization of the concept is done
with use of the tetration of ordinals (Knuth’s arrow notation, ↑↑). Namely, the
ordinal indexing of epsilon numbers is defined as follows:

ε0 = ω ↑↑ω, εα+1 = εα ↑↑ω,

and for limit ordinal λ:

ελ = lim
α<λ

εα =
⋃
α<λ

εα.

Tetration stabilizes at ω:

α ↑↑β = α ↑↑ω for α 6= 0 and β ≥ ω.

Every ordinal number α can be uniquely written as

n1ω
β1 + n2ω

β2 + · · ·+ nkω
βk ,

where k is a natural number, n1, n2, . . ., nk are positive integers, and β1 > β2 >

. . . > βk are ordinal numbers (βk = 0). This decomposition of α is called the
Cantor Normal Form of α.

MML identifier: ORDINAL5, version: 7.11.04 4.130.1076

The notation and terminology used here are introduced in the following papers:
[9], [3], [8], [7], [1], [5], [6], [4], [2], and [10].
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1. Preliminaries

For simplicity, we follow the rules: α, β, γ denote ordinal numbers, m, n
denote natural numbers, f denotes a sequence of ordinal numbers, and x denotes
a set.

One can prove the following proposition

(1) If α ⊆ succβ, then α ⊆ β or α = succβ.

Let us note that ω is limit ordinal and every empty set is ordinal yielding.
One can verify that there exists a transfinite sequence which is non empty

and finite.
Let f be a transfinite sequence and let g be a non empty transfinite sequence.

One can check that f a g is non empty and g a f is non empty.
In the sequel ψ, ψ1, ψ2 denote transfinite sequences.
One can prove the following three propositions:

(2) If domψ = α + β, then there exist ψ1, ψ2 such that ψ = ψ1
a ψ2 and

domψ1 = α and domψ2 = β.

(3) rngψ1 ⊆ rng(ψ1 a ψ2) and rngψ2 ⊆ rng(ψ1 a ψ2).

(4) If ψ1aψ2 is ordinal yielding, then ψ1 is ordinal yielding and ψ2 is ordinal
yielding.

Let f be a transfinite sequence. We say that f is decreasing if and only if:

(Def. 1) For all α, β such that α ∈ β and β ∈ dom f holds f(β) ∈ f(α).

We say that f is non-decreasing if and only if:

(Def. 2) For all α, β such that α ∈ β and β ∈ dom f holds f(α) ⊆ f(β).

We say that f is non-increasing if and only if:

(Def. 3) For all α, β such that α ∈ β and β ∈ dom f holds f(β) ⊆ f(α).

Let us observe that every sequence of ordinal numbers which is increasing is
also non-decreasing and every sequence of ordinal numbers which is decreasing
is also non-increasing.

We now state the proposition

(5) For every transfinite sequence f holds f is infinite iff ω ⊆ dom f.

Let us note that every transfinite sequence which is decreasing is also finite
and every sequence of ordinal numbers which is empty is also decreasing and
increasing.

Let us consider α. Observe that 〈α〉 is ordinal yielding.
Let us consider α. One can check that 〈α〉 is decreasing and increasing.
Let us observe that there exists a sequence of ordinal numbers which is

decreasing, increasing, non-decreasing, non-increasing, finite, and non empty.
The following propositions are true:

(6) For every non-decreasing sequence f of ordinal numbers such that dom f

is non empty holds
⋃
f is the limit of f .
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(7) If α ∈ β, then n · ωα ∈ ωβ.
(8) If 0 ∈ α and for every β such that β ∈ dom f holds f(β) = αβ, then f is

non-decreasing.

(9) If α is a limit ordinal number and 0 ∈ β, then αβ is a limit ordinal
number.

(10) If 1 ∈ α and for every β such that β ∈ dom f holds f(β) = αβ, then f is
increasing.

(11) If 0 ∈ α and β is a non empty limit ordinal number, then x ∈ αβ iff
there exists γ such that γ ∈ β and x ∈ αγ .

(12) If 0 ∈ α and αβ ∈ αγ , then β ∈ γ.

2. Tetration (Knuth’s Arrow Notation) of Ordinals1

Let α, β be ordinal numbers. The functor α ↑↑β yields an ordinal number
and is defined by the condition (Def. 4).

(Def. 4) There exists a sequence ϕ of ordinal numbers such that
(i) α ↑↑β = lastϕ,
(ii) domϕ = succβ,
(iii) ϕ(∅) = 1,
(iv) for every ordinal number γ such that succ γ ∈ succβ holds ϕ(succ γ) =

αϕ(γ), and
(v) for every ordinal number γ such that γ ∈ succβ and γ 6= ∅ and γ is a

limit ordinal number holds ϕ(γ) = lim(ϕ�γ).

We now state a number of propositions:

(13) α ↑↑ 0 = 1.

(14) α ↑↑ succβ = αα ↑↑β.

(15) Suppose β 6= ∅ and β is a limit ordinal number. Let ϕ be a sequence
of ordinal numbers. If domϕ = β and for every γ such that γ ∈ β holds
ϕ(γ) = α ↑↑ γ, then α ↑↑β = limϕ.

(16) α ↑↑ 1 = α.

(17) 1 ↑↑α = 1.

(18) α ↑↑ 2 = αα.

(19) α ↑↑ 3 = αα
α
.

(20) For every natural number n holds 0 ↑↑(2 · n) = 1 and 0 ↑↑(2 · n+ 1) = 0.

(21) If α ⊆ β and 0 ∈ γ, then γ ↑↑α ⊆ γ ↑↑β.
1Important fact (32)

α ↑↑ β = α ↑↑ ω for β ≥ ω and α > 0
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(22) If 0 ∈ α and for every β such that β ∈ dom f holds f(β) = α ↑↑β, then
f is non-decreasing.

(23) If 0 ∈ α and 0 ∈ β, then α ⊆ α ↑↑β.
(24) If 1 ∈ α and m < n, then α ↑↑m ∈ α ↑↑n.
(25) If 1 ∈ α and dom f ⊆ ω and for every β such that β ∈ dom f holds

f(β) = α ↑↑β, then f is increasing.

(26) If 1 ∈ α and 1 ∈ β, then α ∈ α ↑↑β.
(27) For all natural numbers n, k holds nk = nk.

Let n, k be natural numbers. Observe that nk is natural.
Let n, k be natural numbers. One can check that n ↑↑ k is natural.
Next we state several propositions:

(28) For all natural numbers n, k such that n > 1 holds n ↑↑ k > k.

(29) For every natural number n such that n > 1 holds n ↑↑ω = ω.

(30) If 1 ∈ α, then α ↑↑ω is a limit ordinal number.

(31) If 0 ∈ α, then αα ↑↑ω = α ↑↑ω.
(32) If 0 ∈ α and ω ⊆ β, then α ↑↑β = α ↑↑ω.

3. Critical Numbers2

In this article we present several logical schemes. The scheme CriticalNum-
ber2 deals with an ordinal number A, a sequence B of ordinal numbers, and a
unary functor F yielding an ordinal number, and states that:

A ⊆
⋃
B and F(

⋃
B) =

⋃
B and for every β such that A ⊆ β and

F(β) = β holds
⋃
B ⊆ β

provided the following requirements are met:
• For all α, β such that α ∈ β holds F(α) ∈ F(β),
• Let given α. Suppose α is a non empty limit ordinal number. Let
ϕ be a sequence of ordinal numbers. If domϕ = α and for every
β such that β ∈ α holds ϕ(β) = F(β), then F(α) is the limit of
ϕ,

• domB = ω and B(0) = A, and
• For every α such that α ∈ ω holds B(succα) = F(B(α)).

The scheme CriticalNumber3 deals with an ordinal number A and a unary
functor F yielding an ordinal number, and states that:

There exists α such that A ∈ α and F(α) = α

provided the following requirements are met:
• For all α, β such that α ∈ β holds F(α) ∈ F(β), and

2F is increasing continuous map of ordinals and α = F(α) is a critical number of F
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• Let given α. Suppose α is a non empty limit ordinal number. Let
ϕ be a sequence of ordinal numbers. If domϕ = α and for every
β such that β ∈ α holds ϕ(β) = F(β), then F(α) is the limit of
ϕ.

4. Epsilon Numbers3

Let α be an ordinal number. We say that α is epsilon if and only if:

(Def. 5) ωα = α.

One can prove the following proposition

(33) There exists β such that α ∈ β and β is epsilon.

Let us note that there exists an ordinal number which is epsilon.
Let α be an ordinal number. The first ε greater than α yielding an epsilon

number is defined by the conditions (Def. 6).

(Def. 6)(i) α ∈ the first ε greater than α, and
(ii) for every epsilon number β such that α ∈ β holds the first ε greater

than α ⊆ β.
One can prove the following four propositions:

(34) If α ⊆ β, then the first ε greater than α ⊆ the first ε greater than β.

(35) Suppose α ∈ β and β ∈ the first ε greater than α. Then the first ε greater
than β = the first ε greater than α.

(36) The first ε greater than 0 = ω ↑↑ω.
(37) For every epsilon number e holds ω ∈ e.

One can check that every ordinal number which is epsilon is also non empty
limit ordinal.

One can prove the following propositions:

(38) For every epsilon number e holds ωe
ω

= ee
ω
.

(39) For every epsilon number e such that 0 ∈ n holds e ↑↑(n+2) = ωe ↑↑(n+1).

(40) For every epsilon number e holds the first ε greater than e = e ↑↑ω.
Let α be an ordinal number. The functor εα yields an ordinal number and

is defined by the condition (Def. 7).

(Def. 7) There exists a sequence ϕ of ordinal numbers such that
(i) εα = lastϕ,
(ii) domϕ = succα,
(iii) ϕ(∅) = ω ↑↑ω,
(iv) for every ordinal number β such that succβ ∈ succα holds ϕ(succβ) =

ϕ(β) ↑↑ω, and

3An ordinal number α is epsilon iff it is a critical number of expnential map: α 7→ ωα
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(v) for every ordinal number γ such that γ ∈ succα and γ 6= ∅ and γ is a
limit ordinal number holds ϕ(γ) = lim(ϕ�γ).

The following propositions are true:

(41) ε0 = ω ↑↑ω.
(42) εsuccα = εα ↑↑ω.
(43) Suppose β 6= ∅ and β is a limit ordinal number. Let ϕ be a sequence

of ordinal numbers. If domϕ = β and for every γ such that γ ∈ β holds
ϕ(γ) = εγ , then εβ = limϕ.

(44) If α ∈ β, then εα ∈ εβ.
(45) For every sequence ϕ of ordinal numbers such that for every γ such that

γ ∈ domϕ holds ϕ(γ) = εγ holds ϕ is increasing.

(46) Suppose β 6= ∅ and β is a limit ordinal number. Let ϕ be a sequence
of ordinal numbers. If domϕ = β and for every γ such that γ ∈ β holds
ϕ(γ) = εγ , then εβ =

⋃
ϕ.

(47) If β is a non empty limit ordinal number, then x ∈ εβ iff there exists γ
such that γ ∈ β and x ∈ εγ .

(48)4 α ⊆ εα.
(49) Let X be a non empty set. Suppose that for every x such that x ∈ X

holds x is an epsilon number and there exists an epsilon number e such
that x ∈ e and e ∈ X. Then

⋃
X is an epsilon number.

(50) Let X be a non empty set. Suppose that
(i) for every x such that x ∈ X holds x is an epsilon number, and

(ii) for every α such that α ∈ X holds the first ε greater than α ∈ X.
Then

⋃
X is an epsilon number.

Let us consider α. Observe that εα is epsilon.
The following proposition is true

(51) If α is epsilon, then there exists β such that α = εβ.

5. Cantor Normal Form

Let A be a finite sequence of ordinal numbers. The functor
∑
A yielding an

ordinal number is defined by the condition (Def. 8).

(Def. 8) There exists a sequence f of ordinal numbers such that
∑
A = last f

and dom f = succ domA and f(0) = 0 and for every natural number n
such that n ∈ domA holds f(n+ 1) = f(n) +A(n).

One can prove the following propositions:

(52)
∑
∅ = 0.

4Of course not always α ∈ εα because there are critical α’s such that α = εα
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(53)
∑
〈α〉 = α.

(54) For every finite sequenceA of ordinal numbers holds
∑
Aa〈α〉 =

∑
A+α.

(55) For every finite sequence A of ordinal numbers holds
∑
〈α〉aA = α+

∑
A.

(56) For every finite sequence A of ordinal numbers holds A(0) ⊆
∑
A.

Let us consider α. We say that α is Cantor component if and only if:

(Def. 9) There exist β, n such that 0 ∈ n and α = n · ωβ.
Let us note that every ordinal number which is Cantor component is also

non empty.
Let us note that there exists an ordinal number which is Cantor component.
Let us consider α, β. The functor β-exponent(α) yields an ordinal number

and is defined by:

(Def. 10)(i) ββ-exponent(α) ⊆ α and for every γ such that βγ ⊆ α holds γ ⊆
β-exponent(α) if 1 ∈ β and 0 ∈ α,

(ii) β-exponent(α) = 0, otherwise.

The following propositions are true:

(57) α ∈ ωsucc(ω-exponent(α)).

(58)5 If 0 ∈ n, then ω-exponent(n · ωα) = α.

(59) If 0 ∈ α and γ = ω-exponent(α), then α÷ ωγ ∈ ω.
(60) If 0 ∈ α and γ = ω-exponent(α), then 0 ∈ α÷ ωγ .
(61) If 0 ∈ α and γ = ω-exponent(α), then α mod ωγ ∈ ωγ .
(62) If 0 ∈ α, then there exist n, β such that α = n · ωω-exponent(α) + β and

0 ∈ n and β ∈ ωω-exponent(α).

(63) If ω-exponent(β) ∈ ω-exponent(α), then β ∈ α.
Let A be a sequence of ordinal numbers. We say that A is Cantor normal

form if and only if:

(Def. 11) For every α such that α ∈ domA holds A(α) is Cantor component and
for all α, β such that α ∈ β and β ∈ domA holds ω-exponent(A(β)) ∈
ω-exponent(A(α)).

Let us note that every sequence of ordinal numbers which is empty is also
Cantor normal form and every sequence of ordinal numbers which is Cantor
normal form is also decreasing and finite.

In the sequel C, B are Cantor normal form sequences of ordinal numbers.
One can prove the following propositions:

(64) If
∑
C = 0, then C = ∅.

(65) If 0 ∈ n, then 〈n · ωβ〉 is Cantor normal form.

Let us note that there exists a sequence of ordinal numbers which is non
empty and Cantor normal form.

5α-exponent(β) is the entier of the logarithm
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The following four propositions are true:

(66) Let C, B be sequences of ordinal numbers. Suppose CaB is Cantor normal
form. Then C is Cantor normal form and B is Cantor normal form.

(67) If C 6= ∅, then there exists a Cantor component ordinal number γ and
there exists B such that C = 〈γ〉 a B.

(68) Let C be a non empty Cantor normal form sequence of ordinal numbers
and γ be a Cantor component ordinal number. If ω-exponent(C(0)) ∈
ω-exponent(γ), then 〈γ〉 a C is Cantor normal form.

(69)6 For every ordinal number α there exists a Cantor normal form sequence
C of ordinal numbers such that α =

∑
C.
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6α = n1ω
β1 + n2ω

β2 + · · ·+ nkω
βk
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