

FORMALIZED MATHEMATICS Vol. 19, No. 3, Pages 151–153, 2011 DOI: 10.2478/v10037-011-0024-3

Brouwer Fixed Point Theorem in the General Case

Karol Pąk Institute of Informatics University of Białystok Poland

Summary. In this article we prove the Brouwer fixed point theorem for an arbitrary convex compact subset of \mathcal{E}^n with a non empty interior. This article is based on [15].

MML identifier: BROUWER2, version: 7.11.07 4.160.1126

The notation and terminology used here have been introduced in the following papers: [17], [12], [1], [4], [7], [16], [6], [13], [10], [2], [3], [14], [9], [20], [18], [8], [19], [11], [21], and [5].

1. Preliminaries

For simplicity, we adopt the following convention: n is a natural number, p, q, u, w are points of \mathcal{E}_{T}^{n} , S is a subset of \mathcal{E}_{T}^{n} , A, B are convex subsets of \mathcal{E}_{T}^{n} , and r is a real number.

Next we state several propositions:

- (1) $(1-r) \cdot p + r \cdot q = p + r \cdot (q-p).$
- (2) If $u, w \in \text{halfline}(p, q)$ and |u p| = |w p|, then u = w.
- (3) Let given S. Suppose $p \in S$ and $p \neq q$ and $S \cap \text{halfline}(p,q)$ is Bounded. Then there exists w such that
- (i) $w \in \operatorname{Fr} S \cap \operatorname{halfline}(p,q),$
- (ii) for every u such that $u \in S \cap \text{halfline}(p,q)$ holds $|p-u| \leq |p-w|$, and
- (iii) for every r such that r > 0 there exists u such that $u \in S \cap \text{halfline}(p,q)$ and |w - u| < r.

151

C 2011 University of Białystok ISSN 1426-2630(p), 1898-9934(e)

KAROL PĄK

- (4) For every A such that A is closed and $p \in \text{Int } A$ and $p \neq q$ and $A \cap \text{halfline}(p,q)$ is Bounded there exists u such that $\text{Fr } A \cap \text{halfline}(p,q) = \{u\}$.
- (5) If r > 0, then $\operatorname{Fr} \overline{\operatorname{Ball}}(p, r) = \operatorname{Sphere}(p, r)$.

Let n be an element of N, let A be a Bounded subset of $\mathcal{E}^n_{\mathrm{T}}$, and let p be a point of $\mathcal{E}^n_{\mathrm{T}}$. One can verify that p + A is Bounded.

2. Main Theorems

Next we state four propositions:

- (6) Let *n* be an element of \mathbb{N} and *A* be a convex subset of $\mathcal{E}_{\mathrm{T}}^{n}$. Suppose *A* is compact and non boundary. Then there exists a function *h* from $\mathcal{E}_{\mathrm{T}}^{n} \upharpoonright A$ into $\mathrm{Tdisk}(0_{\mathcal{E}_{\mathrm{T}}^{n}}, 1)$ such that *h* is homeomorphism and $h^{\circ} \mathrm{Fr} A = \mathrm{Sphere}((0_{\mathcal{E}_{\mathrm{T}}^{n}}), 1)$.
- (7) Let given A, B. Suppose A is compact and non boundary and B is compact and non boundary. Then there exists a function h from $\mathcal{E}^n_{\mathrm{T}} \upharpoonright A$ into $\mathcal{E}^n_{\mathrm{T}} \upharpoonright B$ such that h is homeomorphism and $h^\circ \operatorname{Fr} A = \operatorname{Fr} B$.
- (8)¹ For every A such that A is compact and non boundary holds every continuous function from $\mathcal{E}^n_T \upharpoonright A$ into $\mathcal{E}^n_T \upharpoonright A$ has a fixpoint.
- (9) Let A be a non empty convex subset of $\mathcal{E}_{\mathrm{T}}^{n}$. Suppose A is compact and non boundary. Let F_{1} be a non empty subspace of $\mathcal{E}_{\mathrm{T}}^{n} \upharpoonright A$. If $\Omega_{(F_{1})} = \operatorname{Fr} A$, then F_{1} is not a retract of $\mathcal{E}_{\mathrm{T}}^{n} \upharpoonright A$.

References

- [1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
- [2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
- [3] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.
- [4] Agata Darmochwał. Compact spaces. Formalized Mathematics, 1(2):383–386, 1990.
- [5] Agata Darmochwał. Families of subsets, subspaces and mappings in topological spaces. Formalized Mathematics, 1(2):257-261, 1990.
- [6] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599–603, 1991.
- [7] Noboru Endou, Takashi Mitsuishi, and Yasunari Shidama. Convex sets and convex combinations. *Formalized Mathematics*, 11(1):53–58, 2003.
- [8] Noboru Endou, Takashi Mitsuishi, and Yasunari Shidama. Dimension of real unitary space. *Formalized Mathematics*, 11(1):23–28, 2003.
- [9] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35–40, 1990.
- [10] Stanisława Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Formalized Mathematics, 1(3):607–610, 1990.
- [11] Artur Korniłowicz and Yasunari Shidama. Intersections of intervals and balls in $\mathcal{E}^n_{\mathrm{T}}$. Formalized Mathematics, 12(3):301–306, 2004.
- [12] Artur Korniłowicz and Yasunari Shidama. Brouwer fixed point theorem for disks on the plane. Formalized Mathematics, 13(2):333–336, 2005.
- [13] Yatsuka Nakamura, Andrzej Trybulec, and Czesław Byliński. Bounded domains and unbounded domains. Formalized Mathematics, 8(1):1–13, 1999.

152

¹Brouwer Fixed Point Theorem

- [14] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223–230, 1990.
- [15] Karol Sieklucki. Geometria i topologia. PWN, 1979.
- [16] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115–122, 1990.
- [17] Andrzej Trybulec. A Borsuk theorem on homotopy types. *Formalized Mathematics*, 2(4):535–545, 1991.
- [18] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291–296, [19] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [20] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186, 1990.
- [21] Mirosław Wysocki and Agata Darmochwał. Subsets of topological spaces. Formalized Mathematics, 1(1):231–237, 1990.

Received December 21, 2010