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Summary. In this article we prove the Brouwer fixed point theorem for
an arbitrary convex compact subset of En with a non empty interior. This article
is based on [15].
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The notation and terminology used here have been introduced in the following
papers: [17], [12], [1], [4], [7], [16], [6], [13], [10], [2], [3], [14], [9], [20], [18], [8],
[19], [11], [21], and [5].

1. Preliminaries

For simplicity, we adopt the following convention: n is a natural number, p,
q, u, w are points of EnT, S is a subset of EnT, A, B are convex subsets of EnT, and
r is a real number.

Next we state several propositions:

(1) (1− r) · p+ r · q = p+ r · (q − p).
(2) If u, w ∈ halfline(p, q) and |u− p| = |w − p|, then u = w.

(3) Let given S. Suppose p ∈ S and p 6= q and S ∩ halfline(p, q) is Bounded.
Then there exists w such that

(i) w ∈ FrS ∩ halfline(p, q),
(ii) for every u such that u ∈ S ∩ halfline(p, q) holds |p− u| ≤ |p−w|, and
(iii) for every r such that r > 0 there exists u such that u ∈ S∩halfline(p, q)

and |w − u| < r.

151
c© 2011 University of Białystok

ISSN 1426–2630(p), 1898-9934(e)

Brought to you by | Biblioteka Uniwersytecka w Bialymstoku
Authenticated

Download Date | 12/8/15 8:44 AM

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/83087012?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://fm.mizar.org/miz/brouwer2.miz
http://ftp.mizar.org/


152 karol pąk

(4) For every A such that A is closed and p ∈ IntA and p 6= q and A ∩
halfline(p, q) is Bounded there exists u such that FrA∩halfline(p, q) = {u}.

(5) If r > 0, then Fr Ball(p, r) = Sphere(p, r).

Let n be an element of N, let A be a Bounded subset of EnT, and let p be a
point of EnT. One can verify that p+A is Bounded.

2. Main Theorems

Next we state four propositions:

(6) Let n be an element of N and A be a convex subset of EnT. Suppose
A is compact and non boundary. Then there exists a function h from
EnT�A into Tdisk(0EnT , 1) such that h is homeomorphism and h◦ FrA =
Sphere((0EnT), 1).

(7) Let given A, B. Suppose A is compact and non boundary and B is
compact and non boundary. Then there exists a function h from EnT�A
into EnT�B such that h is homeomorphism and h◦ FrA = FrB.

(8)1 For every A such that A is compact and non boundary holds every
continuous function from EnT�A into EnT�A has a fixpoint.

(9) Let A be a non empty convex subset of EnT. Suppose A is compact and
non boundary. Let F1 be a non empty subspace of EnT�A. If Ω(F1) = FrA,
then F1 is not a retract of EnT�A.
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