Miscellaneous Facts about Open Functions and Continuous Functions

Artur Korniłowicz
Institute of Informatics
University of Białystok
Sosnowa 64, 15-887 Białystok, Poland

Summary. In this article we give definitions of open functions and continuous functions formulated in terms of "balls" of given topological spaces.

MML identifier: $\underline{\text { TOPS_4 }}$, version: $\underline{7.11 .074 .156 .1112}$

The notation and terminology used here have been introduced in the following papers: [6], [4], [5], [8], [1], [2], [3], [10], [11], [12], [7], [9], and [13].

1. Open Functions

We adopt the following rules: n, m are elements of \mathbb{N}, T is a non empty topological space, and M, M_{1}, M_{2} are non empty metric spaces.

The following propositions are true:
(1) Let A, B, S, T be topological spaces, f be a function from A into S, and g be a function from B into T. Suppose that
(i) the topological structure of $A=$ the topological structure of B,
(ii) the topological structure of $S=$ the topological structure of T,
(iii) $f=g$, and
(iv) f is open.

Then g is open.
(2) Let P be a subset of $\mathcal{E}_{\mathrm{T}}^{m}$. Then P is open if and only if for every point p of $\mathcal{E}_{\mathrm{T}}^{m}$ such that $p \in P$ there exists a positive real number r such that $\operatorname{Ball}(p, r) \subseteq P$.
(3) Let X, Y be non empty topological spaces and f be a function from X into Y. Then f is open if and only if for every point p of X and for every open subset V of X such that $p \in V$ there exists an open subset W of Y such that $f(p) \in W$ and $W \subseteq f^{\circ} V$.
(4) Let f be a function from T into $M_{\text {top }}$. Then f is open if and only if for every point p of T and for every open subset V of T and for every point q of M such that $q=f(p)$ and $p \in V$ there exists a positive real number r such that $\operatorname{Ball}(q, r) \subseteq f^{\circ} V$.
(5) Let f be a function from $M_{\text {top }}$ into T. Then f is open if and only if for every point p of M and for every positive real number r there exists an open subset W of T such that $f(p) \in W$ and $W \subseteq f^{\circ} \operatorname{Ball}(p, r)$.
(6) Let f be a function from $\left(M_{1}\right)_{\text {top }}$ into $\left(M_{2}\right)_{\text {top }}$. Then f is open if and only if for every point p of M_{1} and for every point q of M_{2} and for every positive real number r such that $q=f(p)$ there exists a positive real number s such that $\operatorname{Ball}(q, s) \subseteq f^{\circ} \operatorname{Ball}(p, r)$.
(7) Let f be a function from T into $\mathcal{E}_{\mathrm{T}}^{m}$. Then f is open if and only if for every point p of T and for every open subset V of T such that $p \in V$ there exists a positive real number r such that $\operatorname{Ball}(f(p), r) \subseteq f^{\circ} V$.
(8) Let f be a function from $\mathcal{E}_{\mathrm{T}}^{m}$ into T. Then f is open if and only if for every point p of $\mathcal{E}_{\mathrm{T}}^{m}$ and for every positive real number r there exists an open subset W of T such that $f(p) \in W$ and $W \subseteq f^{\circ} \operatorname{Ball}(p, r)$.
(9) Let f be a function from $\mathcal{E}_{\mathrm{T}}^{m}$ into $\mathcal{E}_{\mathrm{T}}^{n}$. Then f is open if and only if for every point p of $\mathcal{E}_{\mathrm{T}}^{m}$ and for every positive real number r there exists a positive real number s such that $\operatorname{Ball}(f(p), s) \subseteq f^{\circ} \operatorname{Ball}(p, r)$.
(10) Let f be a function from T into $\mathbb{R}^{\mathbf{1}}$. Then f is open if and only if for every point p of T and for every open subset V of T such that $p \in V$ there exists a positive real number r such that $] f(p)-r, f(p)+r\left[\subseteq f^{\circ} V\right.$.
(11) Let f be a function from $\mathbb{R}^{\mathbf{1}}$ into T. Then f is open if and only if for every point p of $\mathbb{R}^{\mathbf{1}}$ and for every positive real number r there exists an open subset V of T such that $f(p) \in V$ and $\left.V \subseteq f^{\circ}\right] p-r, p+r[$.
(12) Let f be a function from $\mathbb{R}^{\mathbf{1}}$ into $\mathbb{R}^{\mathbf{1}}$. Then f is open if and only if for every point p of $\mathbb{R}^{\mathbf{1}}$ and for every positive real number r there exists a positive real number s such that $] f(p)-s, f(p)+s\left[\subseteq f^{\circ}\right] p-r, p+r[$.
(13) Let f be a function from $\mathcal{E}_{\mathrm{T}}^{m}$ into $\mathbb{R}^{\mathbf{1}}$. Then f is open if and only if for every point p of $\mathcal{E}_{\mathrm{T}}^{m}$ and for every positive real number r there exists a positive real number s such that $] f(p)-s, f(p)+s\left[\subseteq f^{\circ} \operatorname{Ball}(p, r)\right.$.
(14) Let f be a function from $\mathbb{R}^{\mathbf{1}}$ into $\mathcal{E}_{\mathrm{T}}^{m}$. Then f is open if and only if for every point p of $\mathbb{R}^{\mathbf{1}}$ and for every positive real number r there exists a positive real number s such that $\left.\operatorname{Ball}(f(p), s) \subseteq f^{\circ}\right] p-r, p+r[$.

2. Continuous Functions

Next we state a number of propositions:
(15) Let f be a function from T into $M_{\text {top }}$. Then f is continuous if and only if for every point p of T and for every point q of M and for every positive real number r such that $q=f(p)$ there exists an open subset W of T such that $p \in W$ and $f^{\circ} W \subseteq \operatorname{Ball}(q, r)$.
(16) Let f be a function from $M_{\text {top }}$ into T. Then f is continuous if and only if for every point p of M and for every open subset V of T such that $f(p) \in V$ there exists a positive real number s such that $f^{\circ} \operatorname{Ball}(p, s) \subseteq V$.
(17) Let f be a function from $\left(M_{1}\right)_{\text {top }}$ into $\left(M_{2}\right)_{\text {top }}$. Then f is continuous if and only if for every point p of M_{1} and for every point q of M_{2} and for every positive real number r such that $q=f(p)$ there exists a positive real number s such that $f^{\circ} \operatorname{Ball}(p, s) \subseteq \operatorname{Ball}(q, r)$.
(18) Let f be a function from T into $\mathcal{E}_{\mathrm{T}}^{m}$. Then f is continuous if and only if for every point p of T and for every positive real number r there exists an open subset W of T such that $p \in W$ and $f^{\circ} W \subseteq \operatorname{Ball}(f(p), r)$.
(19) Let f be a function from $\mathcal{E}_{\mathrm{T}}^{m}$ into T. Then f is continuous if and only if for every point p of $\mathcal{E}_{\mathrm{T}}^{m}$ and for every open subset V of T such that $f(p) \in V$ there exists a positive real number s such that $f^{\circ} \operatorname{Ball}(p, s) \subseteq V$.
(20) Let f be a function from $\mathcal{E}_{\mathrm{T}}^{m}$ into $\mathcal{E}_{\mathrm{T}}^{n}$. Then f is continuous if and only if for every point p of $\mathcal{E}_{\mathrm{T}}^{m}$ and for every positive real number r there exists a positive real number s such that $f^{\circ} \operatorname{Ball}(p, s) \subseteq \operatorname{Ball}(f(p), r)$.
(21) Let f be a function from T into $\mathbb{R}^{\mathbf{1}}$. Then f is continuous if and only if for every point p of T and for every positive real number r there exists an open subset W of T such that $p \in W$ and $\left.f^{\circ} W \subseteq\right] f(p)-r, f(p)+r[$.
(22) Let f be a function from $\mathbb{R}^{\mathbf{1}}$ into T. Then f is continuous if and only if for every point p of $\mathbb{R}^{\mathbf{1}}$ and for every open subset V of T such that $f(p) \in V$ there exists a positive real number s such that $\left.f^{\circ}\right] p-s, p+s[\subseteq V$.
(23) Let f be a function from $\mathbb{R}^{\mathbf{1}}$ into $\mathbb{R}^{\mathbf{1}}$. Then f is continuous if and only if for every point p of $\mathbb{R}^{\mathbf{1}}$ and for every positive real number r there exists a positive real number s such that $\left.f^{\circ}\right] p-s, p+s[\subseteq] f(p)-r, f(p)+r[$.
(24) Let f be a function from $\mathcal{E}_{\mathrm{T}}^{m}$ into $\mathbb{R}^{\mathbf{1}}$. Then f is continuous if and only if for every point p of $\mathcal{E}_{\mathrm{T}}^{m}$ and for every positive real number r there exists a positive real number s such that $\left.f^{\circ} \operatorname{Ball}(p, s) \subseteq\right] f(p)-r, f(p)+r[$.
(25) Let f be a function from $\mathbb{R}^{\mathbf{1}}$ into $\mathcal{E}_{\mathrm{T}}^{m}$. Then f is continuous if and only if for every point p of $\mathbb{R}^{\mathbf{1}}$ and for every positive real number r there exists a positive real number s such that $\left.f^{\circ}\right] p-s, p+s[\subseteq \operatorname{Ball}(f(p), r)$.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[3] Leszek Borys. Paracompact and metrizable spaces. Formalized Mathematics, 2(4):481485, 1991.
[4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[5] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[6] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
[7] Agata Darmochwał and Yatsuka Nakamura. Metric spaces as topological spaces - fundamental concepts. Formalized Mathematics, 2(4):605-608, 1991.
[8] Stanisława Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Formalized Mathematics, 1(3):607-610, 1990.
[9] Artur Korniłowicz and Yasunari Shidama. Intersections of intervals and balls in $\mathcal{E}_{\mathrm{T}}^{n}$. Formalized Mathematics, 12(3):301-306, 2004.
[10] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
[11] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990.
[12] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.
[13] Mariusz Żynel and Adam Guzowski. T_{0} topological spaces. Formalized Mathematics, 5(1):75-77, 1996.

Received February 9, 2010

