

Miscellaneous Facts about Open Functions and Continuous Functions

Artur Korniłowicz Institute of Informatics University of Białystok Sosnowa 64, 15-887 Białystok, Poland

Summary. In this article we give definitions of open functions and continuous functions formulated in terms of "balls" of given topological spaces.

MML identifier: TOPS_4, version: 7.11.07 4.156.1112

The notation and terminology used here have been introduced in the following papers: [6], [4], [5], [8], [1], [2], [3], [10], [11], [12], [7], [9], and [13].

1. Open Functions

We adopt the following rules: n, m are elements of \mathbb{N}, T is a non empty topological space, and M, M_1, M_2 are non empty metric spaces.

The following propositions are true:

- (1) Let A, B, S, T be topological spaces, f be a function from A into S, and g be a function from B into T. Suppose that
- (i) the topological structure of A = the topological structure of B,
- (ii) the topological structure of S = the topological structure of T,
- (iii) f = g, and
- (iv) f is open.

Then g is open.

(2) Let P be a subset of $\mathcal{E}_{\mathrm{T}}^{m}$. Then P is open if and only if for every point p of $\mathcal{E}_{\mathrm{T}}^{m}$ such that $p \in P$ there exists a positive real number r such that $\mathrm{Ball}(p,r) \subseteq P$.

171

C 2010 University of Białystok ISSN 1426-2630(p), 1898-9934(e)

ARTUR KORNIŁOWICZ

- (3) Let X, Y be non empty topological spaces and f be a function from X into Y. Then f is open if and only if for every point p of X and for every open subset V of X such that $p \in V$ there exists an open subset W of Y such that $f(p) \in W$ and $W \subseteq f^{\circ}V$.
- (4) Let f be a function from T into M_{top} . Then f is open if and only if for every point p of T and for every open subset V of T and for every point q of M such that q = f(p) and $p \in V$ there exists a positive real number r such that $Ball(q, r) \subseteq f^{\circ}V$.
- (5) Let f be a function from M_{top} into T. Then f is open if and only if for every point p of M and for every positive real number r there exists an open subset W of T such that $f(p) \in W$ and $W \subseteq f^{\circ} \text{Ball}(p, r)$.
- (6) Let f be a function from $(M_1)_{top}$ into $(M_2)_{top}$. Then f is open if and only if for every point p of M_1 and for every point q of M_2 and for every positive real number r such that q = f(p) there exists a positive real number s such that $\text{Ball}(q, s) \subseteq f^{\circ} \text{Ball}(p, r)$.
- (7) Let f be a function from T into $\mathcal{E}_{\mathrm{T}}^m$. Then f is open if and only if for every point p of T and for every open subset V of T such that $p \in V$ there exists a positive real number r such that $\mathrm{Ball}(f(p), r) \subseteq f^{\circ}V$.
- (8) Let f be a function from $\mathcal{E}_{\mathrm{T}}^m$ into T. Then f is open if and only if for every point p of $\mathcal{E}_{\mathrm{T}}^m$ and for every positive real number r there exists an open subset W of T such that $f(p) \in W$ and $W \subseteq f^{\circ} \operatorname{Ball}(p, r)$.
- (9) Let f be a function from $\mathcal{E}_{\mathrm{T}}^m$ into $\mathcal{E}_{\mathrm{T}}^n$. Then f is open if and only if for every point p of $\mathcal{E}_{\mathrm{T}}^m$ and for every positive real number r there exists a positive real number s such that $\mathrm{Ball}(f(p), s) \subseteq f^{\circ} \mathrm{Ball}(p, r)$.
- (10) Let f be a function from T into \mathbb{R}^1 . Then f is open if and only if for every point p of T and for every open subset V of T such that $p \in V$ there exists a positive real number r such that $]f(p) - r, f(p) + r[\subseteq f^{\circ}V.$
- (11) Let f be a function from \mathbb{R}^1 into T. Then f is open if and only if for every point p of \mathbb{R}^1 and for every positive real number r there exists an open subset V of T such that $f(p) \in V$ and $V \subseteq f^{\circ}[p-r, p+r[$.
- (12) Let f be a function from \mathbb{R}^1 into \mathbb{R}^1 . Then f is open if and only if for every point p of \mathbb{R}^1 and for every positive real number r there exists a positive real number s such that $]f(p) s, f(p) + s[\subseteq f^\circ]p r, p + r[.$
- (13) Let f be a function from $\mathcal{E}_{\mathrm{T}}^m$ into \mathbb{R}^1 . Then f is open if and only if for every point p of $\mathcal{E}_{\mathrm{T}}^m$ and for every positive real number r there exists a positive real number s such that $]f(p) - s, f(p) + s[\subseteq f^{\circ} \operatorname{Ball}(p, r).$
- (14) Let f be a function from \mathbb{R}^1 into \mathcal{E}^m_T . Then f is open if and only if for every point p of \mathbb{R}^1 and for every positive real number r there exists a positive real number s such that $\text{Ball}(f(p), s) \subseteq f^\circ p r, p + r[$.

172

2. Continuous Functions

Next we state a number of propositions:

- (15) Let f be a function from T into M_{top} . Then f is continuous if and only if for every point p of T and for every point q of M and for every positive real number r such that q = f(p) there exists an open subset W of T such that $p \in W$ and $f^{\circ}W \subseteq \text{Ball}(q, r)$.
- (16) Let f be a function from M_{top} into T. Then f is continuous if and only if for every point p of M and for every open subset V of T such that $f(p) \in V$ there exists a positive real number s such that $f^{\circ} \text{Ball}(p, s) \subseteq V$.
- (17) Let f be a function from $(M_1)_{top}$ into $(M_2)_{top}$. Then f is continuous if and only if for every point p of M_1 and for every point q of M_2 and for every positive real number r such that q = f(p) there exists a positive real number s such that $f^{\circ} \operatorname{Ball}(p, s) \subseteq \operatorname{Ball}(q, r)$.
- (18) Let f be a function from T into \mathcal{E}_{T}^{m} . Then f is continuous if and only if for every point p of T and for every positive real number r there exists an open subset W of T such that $p \in W$ and $f^{\circ}W \subseteq \text{Ball}(f(p), r)$.
- (19) Let f be a function from $\mathcal{E}_{\mathrm{T}}^m$ into T. Then f is continuous if and only if for every point p of $\mathcal{E}_{\mathrm{T}}^m$ and for every open subset V of T such that $f(p) \in V$ there exists a positive real number s such that $f^{\circ} \operatorname{Ball}(p, s) \subseteq V$.
- (20) Let f be a function from $\mathcal{E}_{\mathrm{T}}^{m}$ into $\mathcal{E}_{\mathrm{T}}^{n}$. Then f is continuous if and only if for every point p of $\mathcal{E}_{\mathrm{T}}^{m}$ and for every positive real number r there exists a positive real number s such that $f^{\circ} \operatorname{Ball}(p, s) \subseteq \operatorname{Ball}(f(p), r)$.
- (21) Let f be a function from T into \mathbb{R}^1 . Then f is continuous if and only if for every point p of T and for every positive real number r there exists an open subset W of T such that $p \in W$ and $f^{\circ}W \subseteq [f(p) - r, f(p) + r]$.
- (22) Let f be a function from \mathbb{R}^1 into T. Then f is continuous if and only if for every point p of \mathbb{R}^1 and for every open subset V of T such that $f(p) \in V$ there exists a positive real number s such that $f^{\circ}[p-s, p+s] \subseteq V$.
- (23) Let f be a function from \mathbb{R}^1 into \mathbb{R}^1 . Then f is continuous if and only if for every point p of \mathbb{R}^1 and for every positive real number r there exists a positive real number s such that $f^\circ p s, p + s \subseteq f(p) r, f(p) + r[$.
- (24) Let f be a function from $\mathcal{E}_{\mathrm{T}}^m$ into \mathbb{R}^1 . Then f is continuous if and only if for every point p of $\mathcal{E}_{\mathrm{T}}^m$ and for every positive real number r there exists a positive real number s such that $f^{\circ} \operatorname{Ball}(p, s) \subseteq]f(p) r, f(p) + r[$.
- (25) Let f be a function from \mathbb{R}^1 into $\mathcal{E}_{\mathrm{T}}^m$. Then f is continuous if and only if for every point p of \mathbb{R}^1 and for every positive real number r there exists a positive real number s such that $f^{\circ}]p s, p + s[\subseteq \mathrm{Ball}(f(p), r).$

ARTUR KORNIŁOWICZ

References

- Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
- [2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.
- [3] Leszek Borys. Paracompact and metrizable spaces. *Formalized Mathematics*, 2(4):481–485, 1991.
- [4] Czesław Byliński. Functions and their basic properties. *Formalized Mathematics*, 1(1):55–65, 1990.
- [5] Czesław Byliński. Functions from a set to a set. *Formalized Mathematics*, 1(1):153–164, 1990.
- [6] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599–603, 1991.
- [7] Agata Darmochwał and Yatsuka Nakamura. Metric spaces as topological spaces fundamental concepts. *Formalized Mathematics*, 2(4):605–608, 1991.
- [8] Stanisława Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Formalized Mathematics, 1(3):607-610, 1990.
- [9] Artur Korniłowicz and Yasunari Shidama. Intersections of intervals and balls in \mathcal{E}_{T}^{n} . Formalized Mathematics, 12(3):301–306, 2004.
- [10] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223–230, 1990.
- [11] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777–780, 1990.
- [12] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186, 1990.
- [13] Mariusz Żynel and Adam Guzowski. T_0 topological spaces. Formalized Mathematics, 5(1):75–77, 1996.

Received February 9, 2010