1,331 research outputs found
Complexing Behaviour of 2-Thioorotic Acid: Complexes of Co(II), Fe(II), Rh(III), Pd(IV) & Pt(IV)
537-54
Membrane transport proteins in human melanoma: associations with tumour aggressiveness and metastasis
BACKGROUND: Malignant melanoma, generally described as incurable, is notoriously refractory to chemotherapy. The mechanisms contributing to this have not yet been defined and the contributions of drug efflux pumps, implicated in chemo-resistance of many other cancer types, have not been extensively investigated in melanoma.
METHODS: In this study, expression of multi-drug resistant (MDR1/P-gp and MRP-1) proteins was examined, by immunohistochemistry, in archival specimens from 134 melanoma patients. This included 92 primary tumours and 42 metastases.
RESULTS: On assessing all specimens, MRP-1 and MDR1/P-gp expression was found to be common, with the majority (81%) of melanomas expressing at least one of these efflux pumps. Although there is significant association between expression of these pumps (P=0.007), MRP-1 was found to be the predominant (67% of cases) form detected. chi(2) analysis showed significant associations between expression of MRP-1 and/or MDR1/P-gp and the aggressive nature of this disease specifically increased Breslow's depth, Clark's level and spread to lymph nodes. This association with aggressiveness and spread is further supported by the observation that a significantly higher percentage of metastases, than primary tumours, express MRP-1 (91% vs 57%; P<0.0001) and MDR1/P-gp (74% vs 50%; P=0.010).
CONCLUSION: The predominant expression of these pumps and, in particular, MRP-1 suggests that they may be important contributors to the inherent aggressive and resistant nature of malignant melanoma
Initial Sequence and Comparative Analysis of the Cat Genome
The genome sequence (1.9-fold coverage) of an inbred Abyssinian domestic cat was assembled, mapped, and annotated with a comparative approach that involved cross-reference to annotated genome assemblies of six mammals (human, chimpanzee, mouse, rat, dog, and cow). The results resolved chromosomal positions for 663,480 contigs, 20,285 putative feline gene orthologs, and 133,499 conserved sequence blocks (CSBs). Additional annotated features include repetitive elements, endogenous retroviral sequences, nuclear mitochondrial (numt) sequences, micro-RNAs, and evolutionary breakpoints that suggest historic balancing of translocation and inversion incidences in distinct mammalian lineages. Large numbers of single nucleotide polymorphisms (SNPs), deletion insertion polymorphisms (DIPs), and short tandem repeats (STRs), suitable for linkage or association studies were characterized in the context of long stretches of chromosome homozygosity. In spite of the light coverage capturing ∼65% of euchromatin sequence from the cat genome, these comparative insights shed new light on the tempo and mode of gene/genome evolution in mammals, promise several research applications for the cat, and also illustrate that a comparative approach using more deeply covered mammals provides an informative, preliminary annotation of a light (1.9-fold) coverage mammal genome sequence
Diagnosis of iron deficiency in groundnut,Arachis hypogaea L.
Investigations into iron deficiency have been hindered by the lack of a satisfactory diagnostic tissue test, which in turn results from the total iron content of plant tissue commonly being an unreliable index of the iron status. Our measurements of chlorotic and normal leaves of field grown groundnut (Arachis hypogaea L.) showed that total iron was unsatisfactory as the measure of iron status of plant tissue. It was found that iron status was better assessed from an estimate of the ferrous iron content of fresh leaf materials obtained by extraction with o-phenanthroline. Extractable iron content increased with leaf age. Chlorotic buds or the first fully opened leaf always contained less than 6μg extractable-Fe/g fresh tissue
Pathways for horizontal gene transfer in bacteria revealed by a global map of their plasmids
Plasmids can mediate horizontal gene transfer of antibiotic resistance, virulence genes, and other adaptive factors across bacterial populations. Here, we analyze genomic composition and pairwise sequence identity for over 10,000 reference plasmids to obtain a global map of the prokaryotic plasmidome. Plasmids in this map organize into discrete clusters, which we call plasmid taxonomic units (PTUs), with high average nucleotide identity between its members. We identify 83 PTUs in the order Enterobacterales, 28 of them corresponding to previously described archetypes. Furthermore, we develop an automated algorithm for PTU identification, and validate its performance using stochastic blockmodeling. The algorithm reveals a total of 276 PTUs in the bacterial domain. Each PTU exhibits a characteristic host distribution, organized into a six-grade scale (I-VI), ranging from plasmids restricted to a single host species (grade I) to plasmids able to colonize species from different phyla (grade VI). More than 60% of the plasmids in the global map are in groups with host ranges beyond the species barrier.This work was funded by grant BFU2017-86378-P from the Spanish MINEC
A HIF-independent, CD133-mediated mechanism of cisplatin resistance in glioblastoma cells
Purpose
Glioblastoma Multiforme (GBM) is the commonest brain tumour in adults. A population of cells, known as cancer stem cells (CSCs), is thought to mediate chemo/radiotherapy resistance. CD133 is a cell surface marker to identify and isolate CSCs. However, its functional significance and the relevant microenvironment in which to study CD133 remain unknown. We examined the influence of hypoxia on CD133 expression and the potential functional significance of CD133 in glioblastoma chemoresistance.
Methods
Gene expression was analysed by qRT-PCR. siRNA technique was used to downregulate genes and confirmed by flow cytometry. IC50 values was evaluated with the Alamar blue assay.
Results
CD133 expression was upregulated in hypoxia in 2D and 3D models. There was increased resistance to chemotherapeutics, cisplatin, temozolomide and etoposide, in cells cultured in hypoxia compared to normoxia. siRNA knockdown of either HIF1a or HIF2a resulted in reduced CD133 mRNA expression with HIF2a having a more prolonged effect on CD133 expression. HIF2a downregulation sensitized GBM cells to cisplatin to a greater extent than HIF1a but CD133 knockdown had a much more marked effect on cisplatin sensitisation than knockdown of either of the HIFs suggesting a HIF-independent mechanism of cisplatin resistance mediated via CD133. The same mechanism was not involved in temozolomide resistance since downregulation of HIF1a but not HIF2a or CD133 sensitized GBM cells to temozolomide.
Conclusion
Knowledge of the mechanisms involved in the novel hypoxia-induced CD133-mediated resistance to cisplatin observed might lead to identification of new strategies that enable more effective use of current therapeutic agents
- …