7 research outputs found

    TOI-836 : a super-Earth and mini-Neptune transiting a nearby K-dwarf

    Get PDF
    Funding: TGW, ACC, and KH acknowledge support from STFC consolidated grant numbers ST/R000824/1 and ST/V000861/1, and UKSA grant ST/R003203/1.We present the discovery of two exoplanets transiting TOI-836 (TIC 440887364) using data from TESS Sector 11 and Sector 38. TOI-836 is a bright (T = 8.5 mag), high proper motion (∌200 mas yr−1), low metallicity ([Fe/H]≈−0.28) K-dwarf with a mass of 0.68 ± 0.05 M⊙ and a radius of 0.67 ± 0.01 R⊙. We obtain photometric follow-up observations with a variety of facilities, and we use these data-sets to determine that the inner planet, TOI-836 b, is a 1.70 ± 0.07 R⊕ super-Earth in a 3.82 day orbit, placing it directly within the so-called ‘radius valley’. The outer planet, TOI-836 c, is a 2.59 ± 0.09 R⊕ mini-Neptune in an 8.60 day orbit. Radial velocity measurements reveal that TOI-836 b has a mass of 4.5 ± 0.9 M⊕, while TOI-836 c has a mass of 9.6 ± 2.6 M⊕. Photometric observations show Transit Timing Variations (TTVs) on the order of 20 minutes for TOI-836 c, although there are no detectable TTVs for TOI-836 b. The TTVs of planet TOI-836 c may be caused by an undetected exterior planet.Publisher PDFPeer reviewe

    TOI-836: A super-Earth and mini-Neptune transiting a nearby K-dwarf

    Full text link
    We present the discovery of two exoplanets transiting TOI-836 (TIC 440887364) using data from TESS Sector 11 and Sector 38. TOI-836 is a bright (T=8.5T = 8.5 mag), high proper motion (∌ 200\sim\,200 mas yr−1^{-1}), low metallicity ([Fe/H]≈ −0.28\approx\,-0.28) K-dwarf with a mass of 0.68±0.050.68\pm0.05 M⊙_{\odot} and a radius of 0.67±0.010.67\pm0.01 R⊙_{\odot}. We obtain photometric follow-up observations with a variety of facilities, and we use these data-sets to determine that the inner planet, TOI-836 b, is a 1.70±0.071.70\pm0.07 R⊕_{\oplus} super-Earth in a 3.82 day orbit, placing it directly within the so-called 'radius valley'. The outer planet, TOI-836 c, is a 2.59±0.092.59\pm0.09 R⊕_{\oplus} mini-Neptune in an 8.60 day orbit. Radial velocity measurements reveal that TOI-836 b has a mass of 4.5±0.94.5\pm0.9 M⊕_{\oplus} , while TOI-836 c has a mass of 9.6±2.69.6\pm2.6 M⊕_{\oplus}. Photometric observations show Transit Timing Variations (TTVs) on the order of 20 minutes for TOI-836 c, although there are no detectable TTVs for TOI-836 b. The TTVs of planet TOI-836 c may be caused by an undetected exterior planet

    TOI-836: A super-Earth and mini-Neptune transiting a nearby K-dwarf

    Get PDF
    peer reviewe

    Comparative sonographic evaluation of the anteroposterior dimensions of the pancreas in diabetics and nondiabetics

    Get PDF
    Background: The pancreas is an insulin‑producing gland and is prone to varying degrees of destruction and change in patients with diabetes mellitus (DM). Various morphological changes including reduction in the pancreas dimensions have been described in DM.Objectives: To determine pancreatic anteroposterior (AP) dimensions in diabetics by sonography and compare with nondiabetics. To also evaluate the correlation of the AP dimensions with patient’s anthropometry, as well as the duration of the disease in comparison with nondiabetics.Materials and Methods: This is a comparative cross‑sectional study involving 150 diabetics with 150 sex and age matched healthy normoglycemic group used as controls. Sonographic measurements of the AP dimensions of the pancreatic head, body, and tail of both study groups were performed with the use of 3.5 MHz curvilinear array transducer of a SonoAce X4 ultrasound machine. Data were analyzed using Statistical Package for Social Sciences version 17 (SPSS Inc., Chicago, IL, USA). A statistical test was considered significant at P ≀ 0.05 and 95% confidence interval.Results: Pancreas AP dimensions were significantly smaller in diabetics compared to those of the controls. The mean dimensions were 1.91 ± 0.26 cm, 0.95 ± 0.12 cm, and 0.91 ± 0.11 cm for the head, body, and tail, respectively, in diabetics and 2.32 ± 0.22 cm, 1.43 ± 0.19 cm, and 1.34 ± 0.20 cm in the control (P < 0.001 in all cases). The dimensions were also significantly smaller in the Type 1 diabetics compared to Type 2 (P < 0.001 in all cases). The mean duration of illness for the Types 1 and 2 diabetics were 3.09 ± 1.38 and 3.78 ± 3.12 years, respectively. Longer duration of illness was associated with smaller pancreas body and tail dimensions, while pancreas head dimension was not significantly affected by the duration of illness.Conclusion: Diabetics have smaller pancreas AP dimensions compared to the normal population.Key words: Diabetes mellitus, dimension, pancreas, sonograph

    TOI-836:A super-Earth and mini-Neptune transiting a nearby K-dwarf

    No full text
    We present the discovery of two exoplanets transiting TOI-836 (TIC 440887364) using data from TESS Sector 11 and Sector 38. TOI-836 is a bright (T=8.5mag), high proper motion (∌200 mas yr−1), low metallicity ([Fe/H]≈−0.28) K-dwarf with a mass of 0.68±0.05 M⊙ and aradius of 0.67±0.01 R⊙. We obtain photometric follow-upobservations with a variety of facilities, and we use these data-sets todetermine that the inner planet, TOI-836 b, is a 1.70±0.07 R⊕super-Earth in a 3.82 day orbit, placing it directly within the so-called'radius valley'. The outer planet, TOI-836 c, is a 2.59±0.09 R⊕mini-Neptune in an 8.60 day orbit. Radial velocity measurements reveal thatTOI-836 b has a mass of 4.5±0.9 M⊕ , while TOI-836 c has a massof 9.6±2.6 M⊕. Photometric observations show Transit TimingVariations (TTVs) on the order of 20 minutes for TOI-836 c, although there areno detectable TTVs for TOI-836 b. The TTVs of planet TOI-836 c may be caused byan undetected exterior planet

    TOI-836:a super-Earth and mini-Neptune transiting a nearby K-dwarf

    No full text
    We present the discovery of two exoplanets transiting TOI-836 (TIC 440887364) using data from TESS Sector 11 and Sector 38. TOI-836 is a bright (T = 8.5 mag), high proper motion (∌200 mas yr−1), low metallicity ([Fe/H]≈−0.28) K-dwarf with a mass of 0.68 ± 0.05 M⊙ and a radius of 0.67 ± 0.01 R⊙. We obtain photometric follow-up observations with a variety of facilities, and we use these data-sets to determine that the inner planet, TOI-836 b, is a 1.70 ± 0.07 R⊕ super-Earth in a 3.82 day orbit, placing it directly within the so-called ‘radius valley’. The outer planet, TOI-836 c, is a 2.59 ± 0.09 R⊕ mini-Neptune in an 8.60 day orbit. Radial velocity measurements reveal that TOI-836 b has a mass of 4.5 ± 0.9 M⊕, while TOI-836 c has a mass of 9.6 ± 2.6 M⊕. Photometric observations show Transit Timing Variations (TTVs) on the order of 20 minutes for TOI-836 c, although there are no detectable TTVs for TOI-836 b. The TTVs of planet TOI-836 c may be caused by an undetected exterior planet

    Identification of genetic risk loci and causal insights associated with Parkinson\u27s disease in African and African admixed populations: a genome-wide association study

    No full text
    \ua9 2023 Elsevier LtdBackground: An understanding of the genetic mechanisms underlying diseases in ancestrally diverse populations is an important step towards development of targeted treatments. Research in African and African admixed populations can enable mapping of complex traits, because of their genetic diversity, extensive population substructure, and distinct linkage disequilibrium patterns. We aimed to do a comprehensive genome-wide assessment in African and African admixed individuals to better understand the genetic architecture of Parkinson\u27s disease in these underserved populations. Methods: We performed a genome-wide association study (GWAS) in people of African and African admixed ancestry with and without Parkinson\u27s disease. Individuals were included from several cohorts that were available as a part of the Global Parkinson\u27s Genetics Program, the International Parkinson\u27s Disease Genomics Consortium Africa, and 23andMe. A diagnosis of Parkinson\u27s disease was confirmed clinically by a movement disorder specialist for every individual in each cohort, except for 23andMe, in which it was self-reported based on clinical diagnosis. We characterised ancestry-specific risk, differential haplotype structure and admixture, coding and structural genetic variation, and enzymatic activity. Findings: We included 197 918 individuals (1488 cases and 196 430 controls) in our genome-wide analysis. We identified a novel common risk factor for Parkinson\u27s disease (overall meta-analysis odds ratio for risk of Parkinson\u27s disease 1\ub758 [95% CI 1\ub737–1\ub780], p=2\ub7397 7 10−14) and age at onset at the GBA1 locus, rs3115534-G (age at onset ÎČ=–2\ub700 [SE=0\ub757], p=0\ub70005, for African ancestry; and ÎČ=–4\ub715 [0\ub758], p=0\ub7015, for African admixed ancestry), which was rare in non-African or non-African admixed populations. Downstream short-read and long-read whole-genome sequencing analyses did not reveal any coding or structural variant underlying the GWAS signal. The identified signal seems to be associated with decreased glucocerebrosidase activity. Interpretation: Our study identified a novel genetic risk factor in GBA1 in people of African ancestry, which has not been seen in European populations, and it could be a major mechanistic basis of Parkinson\u27s disease in African populations. This population-specific variant exerts substantial risk on Parkinson\u27s disease as compared with common variation identified through GWAS and it was found to be present in 39% of the cases assessed in this study. This finding highlights the importance of understanding ancestry-specific genetic risk in complex diseases, a particularly crucial point as the Parkinson\u27s disease field moves towards targeted treatments in clinical trials. The distinctive genetics of African populations highlights the need for equitable inclusion of ancestrally diverse groups in future trials, which will be a valuable step towards gaining insights into novel genetic determinants underlying the causes of Parkinson\u27s disease. This finding opens new avenues towards RNA-based and other therapeutic strategies aimed at reducing lifetime risk of Parkinson\u27s disease. Funding: The Global Parkinson\u27s Genetics Program, which is funded by the Aligning Science Across Parkinson\u27s initiative, and The Michael J Fox Foundation for Parkinson\u27s Research
    corecore