29 research outputs found

    Lipocalin-2 as an Infection-Related Biomarker to Predict Clinical Outcome in Ischemic Stroke

    Get PDF
    Objectives From previous data in animal models of cerebral ischemia, lipocalin-2 (LCN2), a protein related to neutrophil function and cellular iron homeostasis, is supposed to have a value as a biomarker in ischemic stroke patients. Therefore, we examined LCN2 expression in the ischemic brain in an animal model and measured plasma levels of LCN2 in ischemic stroke patients. Methods In the mouse model of transient middle cerebral artery occlusion (tMCAO), LCN2 expression in the brain was analyzed by immunohistochemistry and correlated to cellular nonheme iron deposition up to 42 days after tMCAO. In human stroke patients, plasma levels of LCN2 were determined one week after ischemic stroke. In addition to established predictive parameters such as age, National Institutes of Health Stroke Scale and thrombolytic therapy, LCN2 was included into linear logistic regression modeling to predict clinical outcome at 90 days after stroke. Results Immunohistochemistry revealed expression of LCN2 in the mouse brain already at one day following tMCAO, and the amount of LCN2 subsequently increased with a maximum at 2 weeks after tMCAO. Accumulation of cellular nonheme iron was detectable one week post tMCAO and continued to increase. In ischemic stroke patients, higher plasma levels of LCN2 were associated with a worse clinical outcome at 90 days and with the occurrence of post-stroke infections. Conclusions LCN2 is expressed in the ischemic brain after temporary experimental ischemia and paralleled by the accumulation of cellular nonheme iron. Plasma levels of LCN2 measured in patients one week after ischemic stroke contribute to the prediction of clinical outcome at 90 days and reflect the systemic response to post-stroke infections

    Validation of elevated levels of interleukin-8 in the cerebrospinal fluid, and discovery of new biomarkers in patients with GBS and CIDP using a proximity extension assay

    Get PDF
    BackgroundBiomarkers for diagnosis of inflammatory neuropathies, assessment of prognosis, and treatment response are lacking.MethodsCSF and EDTA plasma from patients with Guillain-Barré syndrome (GBS), chronic inflammatory demyelinating polyneuropathy (CIDP), healthy controls (HC) and disease controls were analyzed with Olink multiplex proximity extension assay (PEA) from two independent cohorts. Levels of interleukin-8 (IL8) were further analyzed with ELISA in patients with GBS, CIDP, paraproteinemia-related demyelinating polyneuropathy (PDN), multifocal motor neuropathy (MMN), HC and disease controls. ROC analysis was performed. Outcome was measured with the GBS-disability score (GBS-ds) or Inflammatory Neuropathy Cause and Treatment (INCAT) score.ResultsIn CSF, multiplex PEA analysis revealed up-regulation of IL8 in GBS compared to CIDP and HC respectively, and CIDP compared to HC. In addition, levels of IL2RA were upregulated in GBS compared to both HC and CIDP, SELE in GBS compared to HC, and ITGAM, IL6, and NRP1 in GBS compared to CIDP. In plasma, levels of MMP3, THBD and ITGAM were upregulated in CIDP compared to HC. Validation of multiplex IL8 results using ELISA, revealed increased levels of IL8 in CSF in patients with GBS and CIDP versus HC and non-inflammatory polyneuropathies (NIP) respectively, as well as in PDN versus NIP and HC. Levels of IL8 in CSF correlated with impairment in the acute phase of GBS as well as outcome at 6-months follow up.ConclusionIL8 in CSF is validated as a diagnostic biomarker in GBS and CIDP, and a prognostic biomarker in GBS. Multiplex PEA hereby identifies several potential biomarkers in GBS and CIDP

    Microglial autophagy-associated phagocytosis is essential for recovery from neuroinflammation

    Get PDF
    Multiple sclerosis (MS) is a leading cause of incurable progressive disability in young adults caused by inflammation and neurodegeneration in the central nervous system (CNS). The capacity of microglia to clear tissue debris is essential for maintaining and restoring CNS homeostasis. This capacity diminishes with age, and age strongly associates with MS disease progression, although the underlying mechanisms are still largely elusive. Here, we demonstrate that the recovery from CNS inflammation in a murine model of MS is dependent on the ability of microglia to clear tissue debris. Microglia-specific deletion of the autophagy regulator Atg7, but not the canonical macroautophagy protein Ulk1, led to increased intracellular accumulation of phagocytosed myelin and progressive MS-like disease. This impairment correlated with a microglial phenotype previously associated with neurodegenerative pathologies. Moreover, Atg7-deficient microglia showed notable transcriptional and functional similarities to microglia from aged wild-type mice that were also unable to clear myelin and recover from disease. In contrast, induction of autophagy in aged mice using the disaccharide trehalose found in plants and fungi led to functional myelin clearance and disease remission. Our results demonstrate that a noncanonical form of autophagy in microglia is responsible for myelin degradation and clearance leading to recovery from MS-like disease and that boosting this process has a therapeutic potential for age-related neuroinflammatory conditions.Swedish Research CouncilSwedish Brain FoundationSwedish Association for Persons with Neurological DisabilitiesStockholm County Council (ALF project)AstraZeneca (AstraZeneca-Science for Life Laboratory collaboration)European Union Horizon 2020/European Research Council Consolidator Grant (Epi4MS)Knut and Alice Wallenbergs FoundationMargeretha af Ugglas FoundationAlltid Litt SterkereFoundation of Swedish MS researchNEURO SwedenKarolinska InstitutetAccepte

    Acute treatment with valproic acid and L-thyroxine ameliorates clinical signs of experimental autoimmune encephalomyelitis and prevents brain pathology in DA rats

    Get PDF
    This work was supported by grants from the Swedish Research Council (MJ (K2008-66X-20776-01-4 and K2012-99X-20776-05-3)), OH (2011-3457) and GCB (K2011-80P-21816-01-4 and K2011-80X- 21817-01-4)), Harald and Greta Jeanssons Foundation (MJ), Swedish Association for Persons with Neurological Disabilities (MJ), ÅkeWibergs Foundation (MJ), Åke Löwnertz Foundation (MJ), Swedish Brain Foundation (MJ and GCB), David and Astrid Hagélen Foundation (GCB), Swedish Society for Medical Research (GCB), Swedish Society of Medicine (GCB), Socialstyrelsen (MJ), Karolinska Institutet funds (MJ and GCB), Marie Curie Integration Grant, Seventh Framework Programme, European Union (GCB, PCIG12-GA-2012-333713)), Neuropromise LSHM-CT-2005-018637 (MZA, HL) and Theme Center for Regenerative Medicine at Karolinska Institutet (OH)

    Efficacy of vitamin D in treating multiple sclerosis-like neuroinflammation depends on developmental stage

    Get PDF
    AbstractThe association of vitamin D deficiency with higher prevalence, relapse rate and progression of multiple sclerosis (MS) has stimulated great interest in using vitamin D supplementation as a preventative measure and even a therapy for established MS. However, there is a considerable lack of evidence when it comes to an age/developmental stage-dependent efficacy of vitamin D action and a time-window for the most effective prophylactic treatment remains unclear.We studied the effect of vitamin D supplementation in myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE), an animal model of MS, at three different developmental stages in rats. Supplementation treatment was initiated: i) prior to gestation and maintained throughout pre- and early postnatal development (gestation and lactation); ii) after weaning, throughout juvenile/adolescence period and iii) in adult age. We observed a marked attenuation of EAE in juvenile/adolescent rats reflected in a less severe CNS inflammation and demyelination, accompanied by a lower amount of IFN-γ producing MOG-specific T cells. Moreover, the cytokine expression pattern in these rats reflected a more anti-inflammatory phenotype of their peripheral immune response. However, the same supplementation regimen failed to improve the disease outcome both in adult rats and in rats treated during pre- and early post-natal development.Our data demonstrate a developmental stage-dependent efficiency of vitamin D to ameliorate neuroinflammation, suggesting that childhood and adolescence should be the target for the most effective preventive treatment

    Imatinib Ameliorates Neuroinflammation in a Rat Model of Multiple Sclerosis by Enhancing Blood-Brain Barrier Integrity and by Modulating the Peripheral Immune Response

    Get PDF
    <div><p>Central nervous system (CNS) disorders such as ischemic stroke, multiple sclerosis (MS) or Alzheimeŕs disease are characterized by the loss of blood-brain barrier (BBB) integrity. Here we demonstrate that the small tyrosine kinase inhibitor imatinib enhances BBB integrity in experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis (MS). Treatment was accompanied by decreased CNS inflammation and demyelination and especially reduced T-cell recruitment. This was supported by downregulation of the chemokine receptor (CCR) 2 in CNS and lymph nodes, and by modulation of the peripheral immune response towards an anti-inflammatory phenotype. Interestingly, imatinib ameliorated neuroinflammation, even when the treatment was initiated after the clinical manifestation of the disease. We have previously shown that imatinib reduces BBB disruption and stroke volume after experimentally induced ischemic stroke by targeting platelet-derived growth factor receptor -α (PDGFR-α) signaling. Here we demonstrate that PDGFR-α signaling is a central regulator of BBB integrity during neuroinflammation and therefore imatinib should be considered as a potentially effective treatment for MS.</p> </div

    Imatinib suppresses the peripheral immune response.

    No full text
    <p>(A–D) Genome wide expression array analysis performed on inguinal lymph node cells harvested from imatinib-treated and control rats on day 10 p.i. (Affymetrix 1.0 ST. 3' arrays; n = 6 arrays/experimental group). (A) Functional annotations differentially regulated between imatinib and PBS-treated rats. Immune cell trafficking was profoundly downregulated in the imatinib group (red pie-chart), as well as numerous immune functions (blue pie-chart). Numbers indicate the amount of molecules differentially expressed in the certain biological function. (B–D) Canonical pathways most significantly affected by imatinib treatment. Leucocyte extravasation was downregulated in the imatinib-treated rats, especially matrix metalloproteinases and CXCR3 (B). The anti-inflammatory interleukine response is also downregulated in the imatinib group in contrast to controls (C). The communication between the innate and adaptive immune response, especially Toll-like receptor (Tlr) signaling is generally downregulated in the imatinib group (D). Statistics are calculated using t-test and calculated <i>P</i> values indicated high significance for each presented molecule <i>P</i><0.00001 = ***). Error bars (not visible), S.E.M. (E) Gene expression profiling in inguinal lymph nodes day 10 p.i. by qPCR. mRNA transcript levels for Th2-cell lineage proliferation: <i>IL4</i> and <i>STAT6</i> are higher in imatinib-treated rats., whereas control rats showed elevated mRNA levels for <i>TLR2</i> and <i>CD4</i> transcripts (n = 8 rats/experimental group, both inguinal lymph nodes/animal). (F) MOG-induced IFNγ Elispot analysis on imatinib-treated and control rat spleenocytes harvested on day 10 p.i. ConA used as a positive control, MBP as an unspecific antigen (n = 4 rats/experimental group). Imatinib-treated rats had significantly lower number of proliferating MOG specific T-cells comparing to the controls. (G–H) MOG re-stimulation assay with spleenocytes harvested from imatinib-treated or control mice on day 7 p.i. (n = 4 mice/experimental group). Levels of Th1/Th2 specific cytokines measured after three days <i>in vitro</i> culturing in the presence of MOG, MBP or ConA. (A–F) Imatinib or PBS oral gavage was performed from day 5 p.i until the end of the experiment. (G–H) Imatinib or PBS oral gavage was performed from day 2 p.i until the end of the experiment Error bars, S.E.M. Statistics were calculated using t-test and <i>P</i> values <0.05 were considered significant (<i>P</i><0.05 = *, <i>P</i><0.01 = **, <i>P</i><0.001 = ***).</p

    Sex Differences under Vitamin D Supplementation in an Animal Model of Progressive Multiple Sclerosis

    No full text
    A central role for vitamin D (VD) in immune modulation has recently been recognized linking VD insufficiency to autoimmune disorders that commonly exhibit sex-associated differences. Similar to other autoimmune diseases, there is a higher incidence of multiple sclerosis (MS) in women, but a poorer prognosis in men, often characterized by a more rapid progression. Although sex hormones are most likely involved, this phenomenon is still poorly understood. Oxidative stress, modulated by VD serum levels as well as sex hormones, may act as a contributing factor to demyelination and axonal damage in both MS and the corresponding preclinical models. In this study, we analyzed sex-associated differences and VD effects utilizing an animal model that recapitulates histopathological features of the progressive MS phase (PMS). In contrast to relapsing–remitting MS (RRMS), PMS has been poorly investigated in this context. Male (n = 50) and female (n = 46) Dark Agouti rats received either VD (400 IU per week; VD+) or standard rodent food without extra VD (VD−) from weaning onwards. Myelination, microglial activation, apoptotic cell death and neuronal viability were assessed using immunohistochemical markers in brain tissue. Additionally, we also used two different histological markers against oxidized lipids along with colorimetric methods to measure protective polyphenols (PP) and total antioxidative capacity (TAC) in serum. Neurofilament light chain serum levels (sNfL) were analyzed using single-molecule array (SIMOA) analysis. We found significant differences between female and male animals. Female rats exhibited a better TAC and higher amounts of PP. Additionally, females showed higher myelin preservation, lower microglial activation and better neuronal survival while showing more apoptotic cells than male rats. We even found a delay in reaching the peak of the disease in females. Overall, both sexes benefitted from VD supplementation, represented by significantly less cortical, neuroaxonal and oxidative damage. Unexpectedly, male rats had an even higher overall benefit, most likely due to differences in oxidative capacity and defense systems

    About Inherited Skills

    Get PDF
    This video features stories of three Kalmyk women, namely Ekaterina Dorzhieva, Anna Antonova, and Galina Tikeeva. Ekaterina’s mother was an accomplished singer. Ekaterina’s two sisters, one of whom is 87 years old and the other 84, are also good singers and dancers and can skillfully play on the national musical instrument, the dombra. Younger members of the family have also inherited artistic skills. In her youth Ekaterina sang well and was even invited to join a local House of Culture. But she declined the offer and did not develop her singing skills further. Anna’s grandfather on her maternal side was a man of many skills. He played dombra and could work with wood, metal, bones, and pelt. Anna’s maternal grandmother was also a good singer and dombra player. This skill was passed on to Anna’s mother. Anna’s husband Pavel and his siblings are good at calligraphy and writing, which they have inherited from their father. Anna and Pavel’s children have inherited the best from both paternal and maternal sides: they can sing, dance, play dombra, and are good at writing. Galina had a famous ancestor, Nim bagshi, who was a Buddhist monk who emigrated to the US following the Bolshevik Revolution in Russia. Galina says that Nim bagshi’s wisdom has been passed on to his descendants, including Batyr Elistaev who is a well-known Buddhist lama and scholar in Kalmykia.Sponsored by Arcadia Fund, a charitable fund of Lisbet Rausing and Peter Baldwin
    corecore