84 research outputs found

    The generation of an induced pluripotent stem cell line (DCGi001-A) from an individual with FOXG1 syndrome carrying the c.460dupG (p.Glu154fs) variation in the FOXG1 gene

    Get PDF
    FOXG1 syndrome is a neurodevelopmental disorder caused by mutations in the FOXG1 gene. Here, an induced pluripotent stem cell (iPSC) line was generated from human dermal fibroblasts of an individual with the c.490dupG (p.Glu154fs) mutation in the FOXG1 gene. Fibroblasts were reprogrammed using non-integrating episomal plasmids and pluripotency marker expression was confirmed by both immunocytochemistry and quantitative PCR in the resultant iPSC line. There were no karyotypic abnormalities and the cell line successfully differentiated into all three germ layers. This cell line may prove useful in the study of the pathogenic mechanisms that underpin FOXG1 syndrome

    Do shorter lengths of stay increase readmissions after total joint replacements?

    Get PDF
    BackgroundEnhanced recovery after surgery protocols for total joint replacements (TJRs) emphasize early discharge, yet the impact on readmissions is not well documented. We evaluate the impact of a one-day length of stay (LOS) discharge protocol on readmissions.MethodsWe conducted a retrospective review of all primary TJRs (hip and knee) from April 2014 to March 2015. Patients who had adequate support to be discharged home were categorized into 2 groups, 1-day (n = 174) vs 2-day (n = 285) LOS groups. Patients discharged to rehabilitation were excluded (n = 196).ResultsPatients in the 1 day group were more likely to be younger (61.7 vs 64.8 years, P < .001), be male (56.3% vs 40.4%, P = .001), and have a lower body mass index (30.0 vs 31.4 kg/m2, P = .012). One-day LOS patients had shorter surgical times (79.7 vs 85.6 minutes, P = .001) and more likely had spinal anesthesia (46.0% vs 31.2%, P = .001). The overall 30-day all-cause (2.3% vs 2.5%, P = .591) and 90-day wound-related (1.1% vs 1.1%, P = .617) readmission rates were equivalent between groups.ConclusionsEarly discharge does not increase readmissions and may help attenuate costs associated with TJRs. Further refinement of protocols may allow for more patients to be safely discharged on postoperative day 1

    Huntingtin exists as multiple splice forms in human brain

    Get PDF
    Background: A CAG repeat expansion in HTT has been known to cause Huntington’s disease for over 20 years. The genomic sequence of the 67 exon HTT is clear but few reports have detailed alternative splicing or alternative transcripts. Most eukaryotic genes with multiple exons show alternative splicing that increases the diversity of the transcriptome and proteome: it would be surprising if a gene with 67 known exons in its two major transcripts did not present some alternative transcripts. Objective: To investigate the presence of alternative transcripts directly in human HTT. Methods: An overlapping RT-PCR based approach was used to determine novel HTT splice variants in human brain from HD patients and controls and 3D protein homology modelling employed to investigate their significance on the function of the HTT protein. Results: Here we show multiple previously unreported novel transcripts of HTT. Of the 22 splice variants found, eight were in-frame with the potential to encode novel HTT protein isoforms. Two splice variants were selected for further study; HTT Δex4,5,6 which results in the skipping of exons 4, 5 and 6 and HTTex41b which includes a novel exon created via partial retention of intron 41. 3D protein homology modelling showed that both splice variants are of potential functional significance leading to the loss of a karyopherin nuclear localisation signal and alterations to sites of posttranslational modification. Conclusions: The identification of novel HTT transcripts has implications for HTT protein isoform expression and function. Understanding the functional significance of HTT alternative splicing would be critical to guide the design of potential therapeutics in HD that aim to reduce the toxic HTT transcript or protein product including RNA silencing and correction of mis-splicing in disease

    The psychiatric risk gene transcription factor 4 (TCF4) regulates neurodevelopmental pathways associated with schizophrenia, autism, and intellectual disability

    Get PDF
    Background Common genetic variants in and around the gene encoding transcription factor 4 (TCF4) are associated with an increased risk of schizophrenia. Conversely, rare damaging TCF4 mutations cause Pitt–Hopkins syndrome and have also been found in individuals with intellectual disability (ID) and autism spectrum disorder (ASD). Methods Chromatin immunoprecipitation and next generation sequencing were used to identify the genomic targets of TCF4. These data were integrated with expression, epigenetic and disease gene sets using a range of computational tools. Results We identify 10604 TCF4 binding sites in the genome that were assigned to 5437 genes. De novo motif enrichment found that most TCF4 binding sites contained at least one E-box (5′-CAtcTG). Approximately 77% of TCF4 binding sites overlapped with the H3K27ac histone modification for active enhancers. Enrichment analysis on the set of TCF4 targets identified numerous, highly significant functional clusters for pathways including nervous system development, ion transport and signal transduction, and co-expression modules for genes associated with synaptic function and brain development. Importantly, we found that genes harboring de novo mutations in schizophrenia (P = 5.3 × 10−7), ASD (P = 2.5 × 10−4), and ID (P = 7.6 × 10−3) were also enriched among TCF4 targets. TCF4 binding sites were also found at other schizophrenia risk loci including the nicotinic acetylcholine receptor cluster, CHRNA5/CHRNA3/CHRNB4 and SETD1A. Conclusions These data demonstrate that TCF4 binding sites are found in a large number of neuronal genes that include many genetic risk factors for common neurodevelopmental disorders

    SGCE missense mutations that cause myoclonus-dystonia syndrome impair epsilon-sarcoglycan trafficking to the plasma membrane: modulation by ubiquitination and torsinA

    Get PDF
    Myoclonus-dystonia syndrome (MDS) is a genetically heterogeneous disorder characterized by myoclonic jerks often seen in combination with dystonia and psychiatric co-morbidities and epilepsy. Mutations in the gene encoding epsilon-sarcoglycan (SGCE) have been found in some patients with MDS. SGCE is a maternally imprinted gene with the disease being inherited in an autosomal dominant pattern with reduced penetrance upon maternal transmission. In the central nervous system, epsilon-sarcoglycan is widely expressed in neurons of the cerebral cortex, basal ganglia, hippocampus, cerebellum and the olfactory bulb. epsilon-Sarcoglycan is located at the plasma membrane in neurons, muscle and transfected cells. To determine the effect of MDS-associated mutations on the function of epsilon-sarcoglycan we examined the biosynthesis and trafficking of wild-type and mutant proteins in cultured cells. In contrast to the wild-type protein, disease-associated epsilon-sarcoglycan missense mutations (H36P, H36R and L172R) produce proteins that are undetectable at the cell surface and are retained intracellularly. These mutant proteins become polyubiquitinated and are rapidly degraded by the proteasome. Furthermore, torsinA, that is mutated in DYT1 dystonia, a rare type of primary dystonia, binds to and promotes the degradation of epsilon-sarcoglycan mutants when both proteins are co-expressed. These data demonstrate that some MDS-associated mutations in SGCE impair trafficking of the mutant protein to the plasma membrane and suggest a role for torsinA and the ubiquitin proteasome system in the recognition and processing of misfolded epsilon-sarcoglycan

    Sinking Organic Particles in the Ocean—Flux Estimates From in situ Optical Devices

    Get PDF
    Optical particle measurements are emerging as an important technique for understanding the ocean carbon cycle, including contributions to estimates of their downward flux, which sequesters carbon dioxide (CO2) in the deep sea. Optical instruments can be used from ships or installed on autonomous platforms, delivering much greater spatial and temporal coverage of particles in the mesopelagic zone of the ocean than traditional techniques, such as sediment traps. Technologies to image particles have advanced greatly over the last two decades, but the quantitative translation of these immense datasets into biogeochemical properties remains a challenge. In particular, advances are needed to enable the optimal translation of imaged objects into carbon content and sinking velocities. In addition, different devices often measure different optical properties, leading to difficulties in comparing results. Here we provide a practical overview of the challenges and potential of using these instruments, as a step toward improvement and expansion of their applications

    Homozygosity for the C9orf72 GGGGCC repeat expansion in frontotemporal dementia

    Get PDF
    An expanded hexanucleotide repeat in the C9orf72 gene is the most common genetic cause of frontotemporal dementia and amyotrophic lateral sclerosis (c9FTD/ALS). We now report the first description of a homozygous patient and compare it to a series of heterozygous cases. The patient developed early-onset frontotemporal dementia without additional features. Neuropathological analysis showed c9FTD/ALS characteristics, with abundant p62-positive inclusions in the frontal and temporal cortices, hippocampus and cerebellum, as well as less abundant TDP-43-positive inclusions. Overall, the clinical and pathological features were severe, but did not fall outside the usual disease spectrum. Quantification of C9orf72 transcript levels in post-mortem brain demonstrated expression of all known C9orf72 transcript variants, but at a reduced level. The pathogenic mechanisms by which the hexanucleotide repeat expansion causes disease are unclear and both gain- and loss-of-function mechanisms may play a role. Our data support a gain-of-function mechanism as pure homozygous loss of function would be expected to lead to a more severe, or completely different clinical phenotype to the one described here, which falls within the usual range. Our findings have implications for genetic counselling, highlighting the need to use genetic tests that distinguish C9orf72 homozygosity

    Autoinflammatory periodic fever, immunodeficiency, and thrombocytopenia (PFIT) caused by mutation in actin-regulatory gene WDR1

    Get PDF
    The importance of actin dynamics in the activation of the inflammasome is becoming increasingly apparent. IL-1β, which is activated by the inflammasome, is known to be central to the pathogenesis of many monogenic autoinflammatory diseases. However, evidence from an autoinflammatory murine model indicates that IL-18, the other cytokine triggered by inflammasome activity, is important in its own right. In this model, autoinflammation was caused by mutation in the actin regulatory gene WDR1 We report a homozygous missense mutation in WDR1 in two siblings causing periodic fevers with immunodeficiency and thrombocytopenia. We found impaired actin dynamics in patient immune cells. Patients had high serum levels of IL-18, without a corresponding increase in IL-18-binding protein or IL-1β, and their cells also secreted more IL-18 but not IL-1β in culture. We found increased caspase-1 cleavage within patient monocytes indicative of increased inflammasome activity. We transfected HEK293T cells with pyrin and wild-type and mutated WDR1 Mutant protein formed aggregates that appeared to accumulate pyrin; this could potentially precipitate inflammasome assembly. We have extended the findings from the mouse model to highlight the importance of WDR1 and actin regulation in the activation of the inflammasome, and in human autoinflammation

    C9ORF72 hexanucleotide repeat exerts toxicity in a stable, inducible motor neuronal cell model, which is rescued by partial depletion of Pten.

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a devastating and incurable neurodegenerative disease, characterised by progressive failure of the neuromuscular system. A (G4C2)n repeat expansion in C9ORF72 is the most common genetic cause of ALS and frontotemporal dementia (FTD). To date, the balance of evidence indicates that the (G4C2)n repeat causes toxicity and neurodegeneration via a gain-of-toxic function mechanism; either through direct RNA toxicity or through the production of toxic aggregating dipeptide repeat proteins. Here, we have generated a stable and isogenic motor neuronal NSC34 cell model with inducible expression of a (G4C2)102 repeat, to investigate the gain-of-toxic function mechanisms. The expression of the (G4C2)102 repeat produces RNA foci and also undergoes RAN translation. In addition, the expression of the (G4C2)102 repeat shows cellular toxicity. Through comparison of transcriptomic data from the cellular model with laser-captured spinal motor neurons from C9ORF72-ALS cases, we also demonstrate that the PI3K/Akt cell survival signalling pathway is dysregulated in both systems. Furthermore, partial knockdown of Pten rescues the toxicity observed in the NSC34 (G4C2)102 cellular gain-of-toxic function model of C9ORF72-ALS. Our data indicate that PTEN may provide a potential therapeutic target to ameliorate toxic effects of the (G4C2)n repeat
    • …
    corecore